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Strategic Goal/Project Description 

• This project is aimed at maximizing use of efficient air-side economization  in 
modular, large data centers and Datacom housing units 
 

• Determine percentage of a year a data center at a given location could use air-
side economization with and without evaporative cooling systems. 
 

• Improve control system 
– Integration of saturation effectiveness curves into the cooling system control algorithm 
– Control air mixing of cold ambient air with hot data center exhaust air  
– When to dump sump water: Control total dissolved solids (TDS) concentration in the 

sump water 
 

• Minimize water usage of evaporative cooling systems 
– Study effect of total dissolved solids (TDS) concentration on life of cooling pads 
– Study life of cooling pads 
– Selection of cooling pads 

 

• Provide best practices for using the above methods of cooling 
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Research Modular Data Center 
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The research modular data center construction is completed.  
Size 10ft x 12ft x 28ft  



1 Year Chicago Weather Data 
(Recommended Range) 
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Ref. Weather data provided by Dr. Saurabh Shrivastava 

For Tier 1 Data Center 

 
• For data centers with higher tier than 1, the number of hours air-side economizer plus 

evaporative cooling system can be used will be higher. 

• A MATLAB code 
is written to 
make the above 
pie chart for  the 
given weather 
data. 



CFD Model of Modular Data Center 
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 Study:  
• Water utilization effectiveness (WUE) calculation 
• When to replenish and dump the sump water 
• Effect of total dissolved solids (TDS) concentration on life of cooling pads 
• When to replace cooling pads 
• Integration of saturation effectiveness curves into the cooling system control 

algorithm 

Cooling Pad Test Setup 
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Cooling pad test duct attached to an airflow bench Cellulose Corrugated Paper* 

*http://www.tradeindia.com/selloffer/3267080/Evaporative-Cooling-Pad-5090.html 



Measuring Particulate and Gaseous Contaminants 
in Data Centers 
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Top figure: IBM donated 
comb for measuring 
particulate matter size 
and concentration 
 
Left figure: IBM donated 
gaseous contaminant 
concentration measuring 
coupons (Ag & Cu) 

Cold Aisle 



Measuring Particulate and Gaseous 
Contaminants in Data Centers Impacts of 

Particulate and Gaseous Contamination on IT 
Equipment Where Air Side Economizers Are 

Implemented 



 
• Team Leads:  

– Jimil Shah, PhD Student 
– Oluwaseun Awe, PhD Student 

 

• Masters Students:  
– Kanan Pujara 
– Tejeshkumar Bagul (Graduated in December 2014) 
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Team Members 



Contamination Study Plan 

• Phase 1 (Completed): 
– The origin and concentration of gases 
– Classification of contaminants on the basis of corrosivity 
– Narrow down the list of contaminants 
– Concentrate on tackling the contaminants 

 
• Phase 2 (In progress): 

– Dedicated to computational study.  
– Effects of contaminants on various data center equipment 

 
• Phase 3 (In progress): 

– Primary Focus - Validation of CFD models with experiments 
– Effects of various contaminants under varying temperature and 

humidity conditions 
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AIR COOLING OF SERVERS 

John Fernandes             Rick Eiland               Shreyas Nagaraj 
 PhD (Dec 2014)        PhD (May 2015)            MSc (May 2014) 
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Air Cooling of Servers 

• Part I – Effect of RIT on 
server power consumption 
– Determine upper limit for energy-

efficient operation 
– Effect on facility-level performance 

 
• Part II – Optimize fan control 

scheme 
– Determine temperature range for 

minimal server power consumption 
– Savings between original and 

modified setups  
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Note: RIT – Rack inlet temperature (°C) 

Intel Based  
Open Compute Server 



Thermotron 7800 SE 600 

Part I – Single Server Test in Environmental Chamber 

Agilent Data 
Logger 

Yokogawa CW121 
Power Meter 

Omega Ambient 
Conditions Logger 
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Several Servers Testing in a Data Center 
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Populating the Triplet 
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Three servers 
under test 



CONSOLOIDATION OF 
RACK LEVEL FANS 

Bharath Nagendran Shreyas Nagaraj              Rick Eiland             John Fernandes 
MSc (Dec 2013)     MSc (Dec 2014)             PhD (May 2015)       PhD (Dec 2014)  

5/8/2015 UTA, EMNSPC 18 



Experimental Setup – Thermal Measurement 

Test Bench 
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Server Numbers Front View  

Rear View  



Predicted Savings 

• The fan power saved is between 43% and 55% depending 
on the operating speed of the fans 
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Comparison of fan power consumed per server at a given flow rate for the 60mm and 80mm fan cases 



Test Setup 

All fans in running condition 

Fan 1 disconnected (Powered off) Fan Numbering Sequence 

21 

Impact of fan position in a  failure scenario on die temperature 



Graduate Student: Bharath Nagendran 

1st November 2013 

Improving Cooling Efficiency of Servers by 
Replacing Smaller Chassis Enclosed Fans  

with Larger Rack-Mount Fans 

Presented by: 
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University of Texas at Arlington 
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DYNAMIC COLD PLATE 

John Fernandes             Manasa Sahini         Divya Mani                     Ruturaj Kokate 
PhD (Dec 2014)            PhD (May 2016)       MSc (Dec 2014)             MSc (May 2015) 
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Overview 

• Objective 
– Energy-efficient liquid cooling of high power modules 

 
• Approach 

– Propose concept of ‘dynamic cold plate’ 
– Design solution for high power MCM 
– Evaluate performance with extensive CFD analysis 
– Requirements of experimental testing 

• Preview test matrix 
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Concept 
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• MCM serves as basis for design of solution 
– Power dissipation of 485W over 78mm × 78mm 

• Provided by Endicott Interconnect Technologies 

Reference Platform 
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Note: MCM – Multi-chip module; TTV – Thermal test vehicle 
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Details of MCM components 

Dimensions (in mm) 
ASICs – 14.71 × 13.31 × 

0.8 
FPGA – 10.5 × 12.7 × 0.8 



Original Cold Plate 

• Brazed copper body 

• Prevent detrimental performance of TIM 
– Base is milled to 0.002” planarity 
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Top View Bottom View 

Non-uniformity of bottom surface 



• 6SigmaET is employed 
– Solution becomes grid independent at ~16 million cells 

• TIM between devices and cold plate (3.45W/m-K) 
– Thickness of 50um at an interfacial pressure of 75psi 

• Rule of thumb to determine range of flow rates 
– 2kW to 3kW of heat dissipation per gpm of coolant flow 

Thermal Performance 
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Temperature 
ranges are fairly 

consistent 

• Original cold plate 
– Ppump of 0.575W at flow rate of 2lpm 

• Proposed design 
– Ppump of 0.05W at 2lpm 
– Expect savings in either flow power or 

device temperatures  



Initial Study 

• Implement a simple setup that can 
– Power and control resistive heaters 
– Control cooling based on measured temperature 
– Automate the entire procedure 
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Four thick film heaters epoxied to 
heat sink base 

Current control circuit – Modulate heat power with PWM 
signal 



Simple Control Setup 
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MCM TTV 

• Heaters, leads and 
thermocouples have 
been installed 
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Control Circuit 
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Simplified depiction of single 
circuit 



Conclusions 

• Concept of dynamic cold plate was previewed 

• Solution was designed for reference MCM platform 

• Evaluation of cold plate by CFD analysis 
– Distribution through parallel fins in a section was made fairly uniform 
– Expect sizeable savings in either flow power or device temperature 

• Preparation for experimental testing 
– MCM TTV and control circuits 
– Test setup and outline 

 
• Future work 

– Determine available savings through experimental testing of both 
solutions 
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Evaluating Liquid Cooling at the Rack 

34 

Presented by: 
John Fernandes 

University of Texas at Arlington 
 

Wednesday, Oct. 29th, 2014 
IMAPS – ATW on Thermal Management 
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Co-Authors:  
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Veerendra Mulay, Facebook Inc. 
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Michael Soares, CoolIT Systems Inc. 
Cam Turner, CoolIT Systems Inc. 



Rack at a Glance 

• IT equipment installed in the short rack 
– Up to 11 servers (in 4 shelves) 
– One network switch 
– Fully populated power shelf 
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Cooling Configuration 

• Equipped with two heat exchangers 
– In series, exhaust heat from servers to the 

environment 
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Inlet and Outlet Manifolds 

Server-level Inlet and Outlet 

Facility and Coolant Piping 

Liquid to Liquid 
Plate Heat 
Exchanger 

Facility and Coolant Piping 

Sidecar Liquid to 
Air Heat 

Exchanger 



PERFORMANCE OF A 
HIGH DENSITY MINERAL 
OIL IMMERSION COOLED 
SERVER SYSTEM       Rick Eiland              

       PhD Student                           
        May 2015                                                       
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Data Center Fluids 

Fluid 
Density  
(kg/m3) 

Specific 
Heat 

(J/kg∙K) 

Thermal 
Conductivity 

(W/m∙K) 

Dynamic 
Viscosity 
(kg/m∙s) 

Relative 
Heat 

Capacitance 

Air1 1.21 1005 0.026 0.0182 1 

Water2 997 4180 0.610 0.89 3440 

HFE 72003 1430 1220 0.070 0.61 1440 

Mineral Oil4 849 1670 0.130 13.6 1170 

1 – Air Properties, Engineering Toolbox,  http://www.engineeringtoolbox.com/air-properties-d_156.html 
2 – M. Ellsworth, “Comparing Liquid Coolants from Both a Thermal and Hydraulic Perspective” Electronics Cooling, 2006. 
3 – Data Sheet, 3M™ Novec™ 7200 Engineered Fluid, http://solutions.3m.com/ 
4 – Crystal Plus 70T MSDS, STE Oil, http://www.steoil.com/msds-tech-data 
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Server Under Study 
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Experimental Setup 
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Air Cooled 
Radiators 

Pump 

Inlet Outlet 



Measurements 

• Total server power 
 

• Cooling power 
– Pump & Radiator Fans 

 
• Tank inlet temperature & Flow rate 

 
• Component temperatures 

–  CPU, memory, voltage regulators, and chipsets 
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Steady State Conditions 

• Constant synthetic computational load applied using the 
‘lookbusy’ program 
– 75% of CPU resources utilizes 
– 20% of memory resources allocated 
– Represents near peak power consumptions 
– Ideal workload in data center 

 
• Steady state data collected over at least hour long period 
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System Efficiency 

• Partial Power Usage Effectiveness (pPUE) 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐼𝐼𝐼𝐼 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸

𝐼𝐼𝐼𝐼 𝑝𝑝𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸
 

 
• Experimental system can be representative of a “complete” 

data center system rejecting heat to 25°C ambient 
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pPUE Values Achieved 

Equivalent COP ranging from 5.88 – 33.33  
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Oil Inlet Temperature (°C) 

30 35 40 45 50 

Flow 
Rate 
(lpm) 

0.5 1.055 1.041 1.036 1.030 1.027 

1.0 1.086 1.051 1.058 1.039 1.035 

1.5 1.124 1.068 1.079 1.053 1.046 

2.0 1.170 1.088 1.102 1.072 1.059 

2.5 - - 1.129 1.095 1.075 



~40% drop in 
pumping power 

from 30°C to 
50°C 

Oil Temperature-Viscosity 

• Viscosity relationship predicted by ASTM standards for 
transformer oil (mineral oil): 

– 𝜇𝜇 = 𝐶𝐶1 ∗ 𝑝𝑝𝐸𝐸𝑝𝑝
2797.3
𝑇𝑇+273.2

    

• 𝜇𝜇 ∝ 1
𝑅𝑅𝑅𝑅
∝ 𝑓𝑓 ∝ ∆𝑝𝑝 

• 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∆𝑝𝑝 ∗ 𝑉𝑉�  
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Comments – Thermal Performance 

• A single Open-Compute server was characterized for its 
thermal performance in mineral oil 
 

• Suitable oil inlet temperatures up to 45°C may be used for 
service in oil immersion cooled data centers 
– Short excursions into 50°C inlet temperature may be acceptable 

 
• pPUE values ranging from 1.027 – 1.170 were achieved  
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Current Experimental Setup 
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• Three Open Compute 
V3 servers oriented 
vertically 

• Includes*: 
– (6) Intel Xeon E5-2670 
– (48) 8GB DIMMs  

384GB RAM total 
• Roughly 1kW IT load in 

2U (OpenU) form factor 



OIL IMMERSION RELIABILITY 

      Rick Eiland             Gowtham Pedapudi                    Fahad Mirza 
       PhD Student                          MSc                                            PhD  
        May 2015                          May 2015                                 Dec 2014                              
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Solder Balls 

AIR: No oil exposure OIL: Immersed 8 months 

49 5/8/2015 

 No cracks or failure at solder balls were 
observed 

 No bulging seen in oil cooled servers 



Evaluating Heat Sink Performance in 
an Immersion-Cooled Server System 
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Conclusions 
 Server Heat sinks can be dropped to a 1U height in 

immersion cooling! 

 



Performance study of Thermal 
Interface Material in Generation-3 

Intel Server MotherBoard 
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Immersed Server Set-up 
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