
 

 

 

 

 

 

 

 

 

2019 Edition 
 
 
 
 

Chapter 21: SiP and Module  
System Integration 

 
 

http://eps.ieee.org/hir 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We acknowledge with gratitude the use of material and figures in this Roadmap that are excerpted from original sources.   
Figures & tables should be re-used only with the permission of the original source. 

 
 
 

The HIR is devised and intended for technology assessment only and is without regard to 
any commercial considerations pertaining to individual products or equipment. 

http://eps.ieee.org/hir


October, 2019 Table of Contents 

HIR Version 1.0  (eps.ieee.org/hir)                                            Page ii                                  Heterogeneous Integration Roadmap 
 

          Table of Contents 
 
 

CHAPTER 1: HETEROGENEOUS INTEGRATION ROADMAP:  OVERVIEW  .......................................................................... 1 

CHAPTER 2: HIGH PERFORMANCE COMPUTING AND DATA CENTERS ............................................................................. 1 

CHAPTER 3: THE INTERNET OF THINGS (IOT) .................................................................................................................. 1 

CHAPTER 4: MEDICAL, HEALTH & WEARABLES ............................................................................................................... 1 

CHAPTER 5: AUTOMOTIVE ............................................................................................................................................ 1 

CHAPTER 6: AEROSPACE AND DEFENSE ......................................................................................................................... 1 

CHAPTER 7: MOBILE ...................................................................................................................................................... 1 

CHAPTER 8: SINGLE CHIP AND MULTI CHIP INTEGRATION .............................................................................................. 1 

CHAPTER 9: INTEGRATED PHOTONICS ........................................................................................................................... 1 

CHAPTER 10: INTEGRATED POWER ELECTRONICS .......................................................................................................... 1 

CHAPTER 11: MEMS AND SENSOR INTEGRATION ........................................................................................................... 1 

CHAPTER 12: 5G COMMUNICATIONS ............................................................................................................................. 1 

CHAPTER 13: CO DESIGN FOR HETEROGENEOUS INTEGRATION ..................................................................................... 1 

CHAPTER 14: MODELING AND SIMULATION .................................................................................................................. 1 

CHAPTER 15: MATERIALS AND EMERGING RESEARCH MATERIALS ................................................................................. 1 

CHAPTER 16: EMERGING RESEARCH DEVICES ................................................................................................................ 1 

CHAPTER 17: TEST TECHNOLOGY ................................................................................................................................... 1 

CHAPTER 18: SUPPLY CHAIN .......................................................................................................................................... 1 

CHAPTER 19: SECURITY ................................................................................................................................................. 1 

CHAPTER 20: THERMAL ................................................................................................................................................. 1 

CHAPTER 21: SIP AND MODULE SYSTEM INTEGRATION ................................................................................................. 1 
EXECUTIVE SUMMARY AND SCOPE ................................................................................................................................................ 1 
TOOLBOX PERSPECTIVE ............................................................................................................................................................... 3 
MAIN CHALLENGES FROM THE APPLICATION PERSPECTIVE ............................................................................................................... 18 

CHAPTER 22: INTERCONNECTS FOR 2D AND 3D ARCHITECTURES ................................................................................... 1 

CHAPTER 23: WAFER‐LEVEL PACKAGING (WLP) ............................................................................................................. 1 
 

 
 

To download additional chapters, please visit 
 

http://eps.ieee.org/hir 

http://eps.ieee.org/hir


July, 2019  SiP and Module System Integration 

HIR version 1.0 Chapter 21, Page 1 Heterogeneous Integration Roadmap 

Chapter 21: SiP and Module System Integration 

Executive Summary and Scope 

The past decade has seen a rush towards advanced semiconductor nodes along with market growth from smart 
mobile, AI and cloud at the edge, autonomous automotive, IoT, health and wearables.  The functionalities of systems 
and devices have increased with respect to performance, energy consumption and – with System on a Chip (SoC) – 
the marriage of digital, analog and even MEMS and sensors; this has brought system-level performance to small form 
factors such as in smart phones, health monitors and smart homes.  The advance in smaller feature sizes and the 
resulting billions of transistors on a chip bring together the benefits of different worlds of manufacturing, but such 
complex, monolithic devices result in high NRE costs; physical and cost constraints, as well as market needs, suggest 
an alternative is needed.   

Heterogenous integration through SiP (System-in-Package) can leverage the advanced capabilities of packaging 
technology to create systems close to the SoC form factor but with better yield, lower overall cost, higher flexibility, 
and faster time to market; the latter has especially shifted the paradigm from SoC-centric to SiP-centric in the recent 
past even for volume products. This chapter highlights the market needs, technology paths, difficult challenges and 
potential solutions when addressing high-density system integration with advanced packaging materials, tools and 
techniques, with projections on required developments over the next 10 to 15 years. 

Introduction 

System in Package (SiP) – SiP is a combination of multiple active electronic components of different functionality, 
assembled in a single unit, and providing multiple functions associated with a system or sub-system.  A SiP may 
optionally contain passives, MEMS, optical components, and other packages and devices (see especially the Board 
Assembly section, and other Sections, in Chapter 8).  

SiP typically refers to standard packages (such as SO, QFP, BGA, CSP, LGA) that can include dice of different 
semiconductors (e.g. Si, SiGe, SiC, III/Vs such as GaAs or GaN) and semiconductor technology generations (e.g. 
CMOS 65 nm, 45 nm, 28 nm, 14 nm, etc.).  

The roadmapping effort for SiP concentrates on an approach based on current and emerging generations of 
packages and technologies.  Currently, more than 1000 package families with sub-groups and specialities can be 
found in the market.  Some of these packages are highly specialized to niche markets, while others are generic to 
serve multiple applications.  Since most technology developments have initiated several optimization paths towards 
the needs of respective applications, a partitioning (classification) is extremely challenging.  We need to select the 
right SiP concept based on the needs of applications and the available components, which we can then integrate into 
a SiP using the appropriate technologies (see Figure 1). 

 

 
Figure 1: Three-leaf range of influence for the selection of the right SiP approach 

The fundamental vision of SiP is to merge different functionalities (which may even come from different physical 
domains) into one package, thereby offering system-level performance in the form factor of a single package.  Figure 
2 and Figure 3 demonstrate a breaking down of technologies into sub-groups indicative of the main distinctions seen 
in current SiP implementations. 
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Figure 2: Multi-Level Representation of an SiP differentiating SiP-on-Board (SiPoB) and SiP-in-Board (SiPiB)  

[courtesy INFINEON AG] 

The respective boundaries in the value chain are not clearly separated.  The selected method for roadmapping to 
assess the challenges for heterogenous integration concepts and implementation into SiPs is set-up by distinguishing 
between the technical challenges for the integration itself and the challenges imposed by the respective applications 
for the SiP implementation.  Figure 3 shows the respective “packaging toolbox” and the application areas, mediated 
by the (standardized) package form factor. 

 

 
Figure 3: Concept of the "Packaging Toolbox", including interconnects, encapsulations,  

and packaging concepts and architectures as toolbox elements. 

This chapter is organized as follows:  
 First we present the technology portfolio available as of today (end of 2018) – with a focus on 

“interconnects” including the respectively used encapsulation processes and packaging concepts. 
 Next we describe the challenges associated with using the required components to address some 

hallmark applications.  These offer – in conjunction with the toolbox approaches – a methodology for 
selecting the most appropriate implementation. 

 Finally we introduce the challenges driven by physics and by cross-cutting needs, including legislation. 
 

For future SiP´s there is – in accordance with the 2018 Joint European Strategic Research Agenda (SRA) by 
AENEAS, ARTEMIS-IA and EPoSS – a growing understanding that the current distinction between the hitherto 
separate value chains(chip, package, and board/system) is diffused.  This includes, for example, chip manufacturers 
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offering minimum packaging form-factors, OSATs offering HDI-PCB with embedded chips, and EMS’s using bare 
die for functionality increase on their products. 

As shown in Figure 4, heterogeneous integration can appear on three levels: i) at the chip level, e.g. as SoC (System 
on Chip); ii) at the package level, e.g. as SiP or PoP (Package on Package); and iii) at the board level, e.g. chip 
embedding in a PCB. 

 

 
Figure 4: Transition from Chip to System; see also Joint Electronic Components & Systems (ECS) Strategic Research  

Agenda 2018. Heterogeneous integration can appear in all three domains: chip, package, and board/system 

Notably, aside from today’s interconnect workhorses such as wirebonding and flip chip bonding (which will be 
used for a long time to come), novel and highly promising technology innovations will be addressed in this chapter.  
In this context, 3D stacking (3D-IC), W/P-level fan-out packages, and embedded chip packages (ECP or Chip in 
Board, with the associated Chip Embedding Technology – CET), along with extreme high-density interconnect 
approaches such as hybrid bonding, are considered platform technologies which will serve future needs. 

There is also a growing requirement for accurate assembly technologies at the Package, Module and System level; 
this technology requirement is also addressed as part of a packaging toolbox. 

Using key applications for future markets – such as power, autonomous systems, sensor-integrated systems and 
bio-integrated devices – an approach for merging components with appropriate technologies to address their 
respective challenges is provided, to enable a holistic perspective in SiP implementation, selecting from the next-
generation technology tool box. 

Toolbox Perspective 

1. Technology toolbox description 

For setting up a SiP toolbox, we distinguish between interconnect technologies (vertical and horizontal), 
encapsulation technologies (protection and stabilization), and architectures (stacking and packaging concepts) – 
see Figure 3.  The number of available technologies for SiP implementation has grown and includes not only side-
by-side integration, but has also moved to 3D with the advent of stacked-chip assemblies and vertical electrical 
contacts such as through-silicon via (TSV) technology.  SiP integration includes on the one hand core technologies 
like wirebonding or flip chip bonding, and on the other hand hybrid integration concepts.  Examples for hybrid 



July, 2019  SiP and Module System Integration 

HIR version 1.0 Chapter 21, Page 4 Heterogeneous Integration Roadmap 

integration concepts are package-on-package (PoP) or embedded-chip technologies which bring together hitherto 
separated value chains to realize highly functional systems. 

 

1.1 Interconnects 

For setting up an SiP we distinguish between: 
 Vertical electrical contacts, like TxV (Through-X-Vias, with X representing silicon (S) or glass (G), as 

well as encapsulant (E) or molding (M)), flip chip (e.g. as part of 3D IC) and solder bump interconnect 
(for Package-on-Package – PoP). 

 Horizontal electrical interconnects (e.g. Redistribution Layers – RDLs – in case of single or of multiple 
interconnect layers). 

Today’s workhorse, wirebonding, has the advantage that it can provide horizontal (chips side-by-side) as well as 
vertical (e.g. Chinese tower architecture) interconnects.  But this technology reaches severe limits: for example, in 
respect to high parasitics and low manufacturing tolerances.   

Table 1 summarizes some of the current existing technologies, with their state-of-the- art in volume production. 
 

Table 1: SiP Interconnect Technologies 

 
 

In subsequent sections, the individual technologies are briefly described to show both current state-of-the-art as 
well as their future evolution. 

Interconnect toolbox elements: 

a. Wirebonding including stacked chips (HORIZONTAL and VERTICAL) 
 

 
Figure 5: Stacked chips using wirebonding [courtesy XXX] 

Wire bonding is still the most cost-effective and flexible interconnection technology in micro-electronics.  The 
wire bonding process utilizes force, ultrasonic power, and temperature to produce a metallurgical material joint.  A 
large range of wire diameters, typically from 15 µm to 500 µm, are available.  Round wires and ribbons of various 
metallic materials, such as Au, Al, Ag, Cu, Cu-Pd, and Pt, can be used.  3-dimensional system packages, e.g. stacked 

Technology Toolbox

State of the Art

suitable for 

chipsize

chip I/O 

magnitude feasible chip pitch 

served chip 

count max. # of domains served

[mm] [10s, 100s, 1000s] [µm] [#]

[electrical, optical,

mechanical, biochem, …]

Wirebonding <40mm 100 20 8 4

FlipChip Bonding <40mm 1000 15 8 (TSV stack) 4

RDL Redistribution Layer <40mm 100s 5 3 2

TxV´s n/a 100s 75 2 2

Solder Ball n/a 1000s 25 2 1

Hybrid Bonding Interconnect <25mm 1000 5 6 4

suitable chip size: Interconnect technology already demonstrated

chip I/O magnitude: capability derived from technical feasibility

feasible chip pitch: derived from currently demonstrated implementations

served chip count: derived from currently demonstrated implementations

domains served: derived from currently demonstrated implementations
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chip assemblies, can be connected with high throughput and automated adjustment to chip misalignments.  The loop 
shapes of the wire bonds are highly reproducible.  This is a key demand for highly integrated connection schemes.  
See the Wirebond section in Chapter 8. 

Driven by the advent of thin-chip technology, processes for chip stacking (including die attach film – DAF – and 
multi-level fine pitch wirebonding) have become state of the art.  They allow a shift from horizontal to vertical 
interconnect strategies.  Sophisticated wire routing in three dimensions and the adaption of mold materials to flow 
through the densely arranged wire mesh for optimum encapsulation, have since developed as workhorses for SiP 
applications.  This wirebond approach is mostly limited to serving the electrical domain only (i.e. memory- and 
memory-logic stacks).  On a coarser integration level, MEMS components with their logic elements have been built, 
especially to serve mobile device and automotive use cases. 

 

b. FlipChip including Chip-on-Chip via TSV (VERTICAL) 

 
Figure 6: Stacked chips using microbump flip chip technology depicting very high integration density  

While wirebonding has adapted established technologies in an evolutionary approach, using Through Silicon Vias 
(TSVs) offers a much more radical innovation path.  Whether using via-first, via-middle or via-last approaches, all 
of these provide a direct path from the active frontside to the chip’s backside, allowing a direct chip-to-chip 
integration in flip-chip bonding fashion.  Microbump formation (solder or Cu pillars) as well as direct bonding 
processes have evolved accordingly, so today a large number of contacts distributed over the chip area can be 
accommodated for 3D stacking of components.  However, due to the fact that the need for similarly sized chips and 
matched I/Os are omnipresent, currently this high-tech implementation is limited to several niche applications such 
as high-density flash memory and high-bandwidth memory-logic integration (e.g. Intel) or chip stacks for integrated 
camera systems (e.g. Sony). 

 

c. Hybrid Bonding interconnect (VERTICAL) 
Using advances in wafer bonding techniques and TSVs, an emerging technology for chip integration for SiP is 

hybrid bonding.  The technology has proven its merits already in wafer-to-wafer bonding, offering the highest level 
of integration so far for camera chipsets (e.g. Sony).  The principle is that the wafers to be connected are fine- polished 
to allow direct bonding of the joined surfaces (i.e. without any intermediate layer), as developed for MEMS 
packaging.  Here, with TSV´s in place, the contacts are precision aligned and joined, and the Van-der-Waals forces 
forming the bond via the dielectric surface pull the wafers together on an atomic-scale.  An annealing process enables 
metal diffusion between the contacts, forming direct interconnects.  The precision of the alignment of the equipment 
and the required contact area for the nominal current density is the limiting factor for the interconnect pitch.  Currently 
a minimum pitch of 5um on a full area array scale for 300mm wafers can be achieved, with the possibility of multi-
wafer stacking as well.  

However, as the technology requires access to full wafers for the wafer-scale preparation, as well as wafer-wafer 
bonding, its use is restricted to specific use cases with the manufacturer controlling all aspects of wafer fabrication 
and subsequent interconnect processes. 
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Figure 7: Stacked chips using hybrid bonding [courtesy Sony Corp.] 

d. Redistribution Layer (RDL) Interconnect (HORIZONTAL) 
Redistribution layers have emerged as enablers for wafer-level packaging, offering fan-in redistribution of 

peripheral contacts across the full area of the chip. Initially seen as an intermediate step between the era of wirebond 
and flip chip, the WLPs have since established themselves as the third workhorse of today’s semiconductor packaging 
industry, enabling cost-effective, reliable, small size (chip-scale) packages. RDLs however, are also being used to 
interconnect adjacent chip sets in a more complex setting. RDLs started out with lithographically defined structures, 
building on the technologies of thin film substrates: seed layer deposition, resist deposition and lithographic 
structuring, electrodeposition, strip and etch. With this technique, µm scale features with adequate line thickness were 
made possible (i.e. larger than 1:1 aspect ratio using HAR resists). Recently, direct deposition by aerosol jet printing 
or silver ink printing have emerged, without the need of a mask set and thus, reducing the initialization cost. 

1.2 Encapsulation Technologies 

Traditionally, encapsulation has been used to protect the sensitive wirebonds from environmental influences (i.e. 
molded package or glob top protected chip-on-board).  Also, encapsulation allowed flip chip contacts on ceramic or 
laminate to achieve high reliability under critical operating conditions using capillary-flow underfill materials.  For 
these legacy processes, both liquid encapsulants (usually silica-filled epoxy materials) as well as pellet-type electronic 
mold compounds, liquefied during the mold process, have been used.  With the advent of single-chip Molded Array 
Packages and subsequently Large Area Molding, granular and powder materials used for compression molding were 
developed and are now used not only for protective encapsulation, but also to offer the mechanical basis for modern 
packaging concepts like eWLP and Fan-Out Panel-Level Packaging. 

Aside from these technology innovations emerging from the chip packaging needs, another pathway coming from 
printed circuit board manufacturing has found its application in encapsulating chips and (sub)systems.  The core layer 
of a PCB is populated with active and passive dies and subsequently co-encapsulated during the vacuum lamination 
step where b-stage epoxy resin sheets are liquefied and bond the individual laminate (prepreg) layers of the PCB to 
each other.  With state-of-the-art micro-via technology, these components are connected to the outer wiring layers in 
the same fashion as the inner routing layers (see  CET section below), while the binding resin serves simultaneously 
as protective encapsulant and mechanical bond between component and PCB layers. 

Encapsulants have been designed for their intended use, i.e. EMC´s were designed for subsequent assembly 
processes, while globtops had to withstand the rigors of everyday use.  An indicator for their use in SiP manufacturing 
processes and prospective caveats is given by the moisture sensitivity level (MSL). 

Table 2 shows the current state of the art for industry grade materials. 
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Table 2: Encapsulants for protection (MSL: Moisture sensitivity level, 1:best, 3:worst) 

 
 

As either of the encapsulation processes described is an intrinsic part of a given package concept, details on their 
use will be provided in the respective portions of the next section 1.3. 

 

1.3. Architectures and package concepts 

1.3.1 Package-on-Package (PoP) 

TSV-FlipChip technologies have shortcomings with respect to inherent difficulties for testing, processing cost and 
I/O matching.  Package on Package (PoP) is a concept using finished and standardized packages, which are stacked 
on top of each other.  Each single package can be tested alone.  The possibility for long-term planning with respect 
to I/O footprint, as well as the known cost situation and established infrastructures with the OSATs, has been a focus 
of technology evolution. 

The advent of thin chips in combination with thin, high-density substrates and minimum capping mold 
encapsulation has offered the opportunity to leverage the advantages of PoP to serve many application requirements 
at target cost. 

PoP has since seen the transition from mimicking stack-chip integration by using wirebonding via peripheral BGA 
concepts towards through-mold vias – replicating TSVs at a somewhat coarser level.  This enables OSATs to provide 
a solution with substantially higher compatibility with established infrastructures, EDA tools and testability. 

A major trend for PoP is ongoing miniaturization and integration of more functionality into a smaller volume.  
Thinner chips and thinner packages will drive applied material combinations to their limits.  

 
Figure 8: Package on Package Architecture 

 

1.3.2. Chip Embedding Technologies (CET)  

a. Active chip 
While the initial concept of using active circuitry embedded into the substrate had seen its first conceptions as 

early as 1970, it took nearly 30 years to be picked up by academia and industry’s R&D.  The tipping point was 
actually the availability of additive HDI substrate technology and thin active chips with compatible pad metallization 
at a decent quality level. 

From that point on, OSAT and PCB manufacturers alike have pushed forward with the advancement of structure 
sizes, alignment precision, tolerance compensation, chemistries for the collective wiring, and test/design strategies.  
In principle, the mainstream technological approach used nowadays follows the process of HDI substrate processing. 

Firstly, the respective layers are defined (typically by LDI) and then the thinned active chips are placed and fixed 
in their target positions.  The full stack to realize the different laminate layers is built by vacuum-lamination, ensuring 
a full encapsulation of the thin chips.  Laser via-hole drilling, similar – and in parallel – to the creation of blind vias, 

Encapsulant provisioning filled MSL

GlobTop liquid x CoB‐Wirebond chip protection 3

Underfill liquid x FlipChip chip protection 3

Pre‐Applied Underfill film o FlipChip chip protection 3

EMC pellet x standard pck. chip protection 1

MAP‐EMC granule x BGA, QFN package structure 1

FO‐xLP EMC powder x eWLP, FO‐PLP package structure 1

Laminate film/sheet o ECP package structure 3

SiP application area
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exposes the pads for the subsequent chemical deposition of the interconnect metal, fully compatible with BU-HDI 
technology. 

This concept requires known-good die (KGD), or at least a quality level acceptable to the target yield figure, for 
successful commercialization.  For this technology, testing can only identify defective assemblies and mark them for 
discard, without repair options.  Building a multi-die SiP with this technology is thus limited to the use of ICs with 
adequate quality level, somewhat limiting its acceptance to high-volume, low-IC-number SiPs. 

 
Figure 9: Embedded Chip Technology (CET) Architecture [courtesy Schweizer, Continental & Infineon] 

b. Passive chip and integrated passive device (IPD) 
Typically, a large number of passive components is required for combining the different functionalities in a SiP.  

This includes inductors and capacitors in larger numbers than active dies.  Passives are especially needed for radio 
frequency (RF) circuits to provide impedance matching, but also for chips that require decoupling and noise blocking, 
etc.  For implementation of passive devices, we distinguish between: 

 embedding of passive chips,  
 embedding of standard passive components, and  
 design of so-called integrated passive devices (IPD).  

Passive silicon chips are devices without active transistors.  A high-ohmic silicon substrate is used for 
implementation of capacitors, resistors and inductors in the BEOL.  This technology today still is challengee to meet 
viable cost targets.    

The other possibility is the use of embedded standard passive devices, which are integrated in the laminate stack 
– mimicking the CET process steps.  The shrinking of components from 0805 to 0201 sizes, and most recently to 
008004, allows mounting large numbers of passives on a given footprint.  With these many components, high yield 
at low cost becomes more and more of a challenge with current assembly processes.  

 
 

Resistor (a) Inductor (b) Capacitance (c) 
 

 

 

 

 

 

 

Transformer (d) Diplexer (e) Low Pass Filter (f) Band Pass Filter (g)

  
Figure 10: Integrated Passive Devices 
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The third possibility are IPDs, which have attracted a lot of interest during previous years due to their compact 
size and high level of integration.  Foundries are using this packaging technology already to integrate inductors, 
capacitors and resistors in the same die to provide one or more required circuit functions.  Examples are passive 
component banks, matching devices, filters, multiplexers, couplers, transformers, baluns, antennas, etc.  These 
embedded passives are suited for wireless RF front-end systems, as they result in better system performance than 
with SMD components.  They also can be designed at lower cost compared to passives integrated onto active ICs. 

Some implementations of the mentioned integration techniques are provided in Figure 10a-g.  As before, the 
technology for integration into the PCB is identical to what has been described in the previous section. 

IPD component technology is simultaneously migrating from 2D (multi- RDL) inductor to FO (-Inductor and -
3D) tall-pillar inductor platform for high-integration requirements. More and more customer start to design inductor 
in FO layer, helping to reduce SMD quantity and package size. 3D tall-pillar inductors not only can achieve high Q 
quality, but also the pillar height can be designed for chip embedding in same layer (figure 11). 

 

 

Figure 11: Next gen IPD moving from 2D to 3D [courtesy ASE] 

c. Non-functional interposer chips (EMIB) 
As the routing density of even HDI substrates is limited by current advanced PCB processing capability – 

especially with high-pin-count chips – these laminates are currently challenged beyond their limits.  For the case of 
parallel data transfer buses, connecting two IC’s with high bandwidth via a large number of interconnect I/Os, 
alternatives are required to the capabilities of HDI.  RDL-on-silicon plays an enabling role in this concept.  With 
hybrid integration concepts such as Intel´s Embedded Multi-die Interconnect Bridge (EMIB), this challenge can be 
addressed without the requirement of a silicon interposer spanning beyond the chip footprint of the (multiple) 
connecting dies.  With EMIB, the aforementioned technology for CET is reduced to embedding a high-density 
interposer element in the top layer of the SiP laminate board, in the area where the high-density interconnects are 
needed, bringing together the best of the two worlds while adding only the cost for the EMIB high-density interposer. 

 

 
Figure 12: CET for horizontal integration [ ] 
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1.3.3. Fan-out Wafer Level Packaging (FOWLP) 

For Fan-out Wafer Level Packaging, the two basic process flows involve the Mold-first or the RDL-first approach.  
For the Mold-first process, a face-down and a face-up option also exist.  Both variants are already in mass production. 

FOWLP has a high potential for significant package miniaturization, affecting not only package volume but also 
thickness.  The main advantages of FOWLP are the substrate-less package, lower thermal resistance, higher 
performance due to shorter interconnects, together with direct IC connection with thin-film metallization instead of 
wire bonds or flip chip bumps, and lower parasitic effects.  The inductance of the FOWLP is much lower compared 
to FC-BGA packages, making it ideally suited for RF applications.  In addition, the redistribution layer can provide 
embedded passives (R, L, C) as well as antennas, using a multi-layer structure.  

Heterogeneous system integration for SiP also includes 3D routing of electrical signals and double-sided 
redistribution layers for package-on-package (PoP) stacking.  Different technologies are available for through-
package or through-mold vias.  Available solutions include plated Cu pillars applied before molding, integration of 
vertical interconnect elements made from printed circuit boards, Si or molded wafers, and laser-drilled and direct-
metallized vias. 

 
Figure 13: eWLP for a fan out wafer level package (FO-WLP) concept [courtesy Fraunhofer IZM] 

The fan-out WLP technology allows broad use for system integration.  Figure 14 shows an example of two dies 
stacked with their backside bonded.  The bottom die has its active layer to the bottom RDL; the upper die has its 
active side to the upper RDL.  On the upper RDL, passive SMD devices are included for this system.  The upper and 
lower dice are connected with a TEV (Through-Encapsulant-Via). 

 

 
Figure 14:  Example of a stack of two backside bonded dies.   

On the upper RDL, passive SMD devices are included for this system (courtesy Infineon). 

1.3.4 Panel Level Packaging (FOPLP)  

Fan-out Wafer Level Packaging (FOWLP) is one of the latest packaging trends in microelectronics.  
Manufacturing is currently done on wafer level up to 300 mm and 330 mm respectively.  For higher productivity and 
thus lower costs, larger form-factors have been introduced.  Instead of following the wafer-level roadmaps to 450 
mm, panel-level packaging (PLP) might be the next big step.  Many companies, including Samsung SEMCO, Nepes, 
Powertech and Deca with ASE, have already announced that they are preparing for PLP in volume manufacturing in 
2019/2020.  Sizes considered for the panel range from 300x300 mm² to 457x610 mm² or 510x510 mm² up to 600x600 
mm² or even larger, influenced by different technologies coming from printed circuit board, solar or LCD 
manufacturing. 

Key indicators derived from these architecture level/package concepts of 1.3.1-1.3.4 are summarized in Table 3: 
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Table 3: Overview of key indicators for package concepts (in alignment with Table 1 for “Interconnects”) 

Technology Toolbox      
 
State of the Art 

suitable 
for chipsize 

chip I/O
magnitude

 
feasible chip pitch

chip count max. # of domains 
served 

  
[mm] 

 
[10s, 100s, 

1000s]
 

[µm] 
 

[#] 
[electrical, optical, 

mechanical, biochem, …]

      

Package on Package 
Up to 
20mm 

100 
Depending on 

internal interconnect 
technology

6 4 

Embedded Chip Technology 
Up to 
40mm 

100 75 6 3 

FO‐W/PLP 
Up to 
40mm 

100 30 4 4 

      
suitable chip size: Interconnect technology already demonstrated    
chip I/O magnitude: capability derived from technical feasibility    
feasible chip pitch: derived from currently demonstrated implementations   
served chip count: derived from currently demonstrated implementations    
domains served: derived from currently demonstrated implementations    

 

1.3.5  Chiplet Technology  

As a leg bridging the application and technology side, chiplets have been in discussion since the late 1980s.  With 
the advent of the before-mentioned interconnect technologies and package concepts, the approach has gained new 
impetus.  While “Chiplet” by itself cannot be classified either into the elements of the interconnect toolbox or the 
architectural concepts, the concept both makes use of these building blocks as well as drives elements of these. 

Differentiation needs to be done on the side of IP partitioning (mostly driven by novel business models) and 
technology partitioning, the latter combining the elements of the toolbox in a processing combination, while the 
former focuses on the physical implementation of individual IP building blocks and combining these into a whole 
system. 

DARPA´s CHiPs program [3] represents this concept (Figure 15), being agnostic to the final integration process 
but ensuring that critical IP building blocks can be combined, typically via silicon HD interposers. 

 

 
Figure 15: Chiplet concept as described by DARPA 
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This approach offers the following features: 
 modular and reusable IP-block in physical form; 
 complying with electrical and physical interface standards; 
 to be assembled with existing and emerging industry standards; and 
 tries to leverage the best aspects of both SoC and SiP. 

With the advent of 7nm nodes and beyond, there is a need to merge CMOS cores from different fabrication (i.e. 
node) techniques, plus non-CMOS technology has become necessary for cost and performance reasons.  However, 
larger physical IP blocks can no longer be easily built on a single HD Si interposer because manufacturing these is 
limited to ~ 1 inch (2.5 cm) in size.  To overcome this issue, the OSDA initiative [4], Intel [5], LETI [6] and ULCA 
[7] have independently suggested merging PCB and HD Si interposer concepts to form the carrier for these IP 
building blocks, gaining the advantages of both worlds with respect to cost, performance and size. 

 

 
Figure 16: Complementary PCB (eg. EMIB) and HD Si Interposer Technology for Chiplet realization  

[courtesy INTEL, CEA LETI] 

With these considerations in mind, Figure 16 depicts the Chiplet approach with the definition of being functional, 
verified, re-usable physical IP blocks embedded in an eco system defining interface standards and assembly 
standards for rapid implementation of integrated systems with performance level of SoCs in mind to achieve data 
rates into the TB/s regime with energy efficiencies down to 0.2pJ/bit and ns latency. 

1.3.6 Modules 

Modules have since evolved with the promise to bring maximized functionality for specific use cases not only into 
a package form factor ready for use by, for example, an OEM/ODM, but integrate the functionality to the level of the 
end user.  While previously such a product was built leveraging all aspects of the established value chain from 
component to the housed product, the push towards maximum integration limits the manufacturing options towards 
technology contenders with the most advanced integration technologies – typically highly vertically integrated 
manufacturers.  Yole has broken down one of current hallmark products and identified the functional integration to 
be as densely packed to validate the definition of a SiP (see [1]). 

If this perspective is adopted, the acronym “SiP” may become a self-referring description for highly integrated 
functions, leveraging: 

 Highly integrated electronic functionalities (including electronic-only SiP components – level 1); 
 Miniaturized integration of non-electronic functionalities (i.e. sensors, actuators – level 1); 
 With contained functionality of the entire system’s internal and external functions (embedded system – 

level 2); 
 Fully contained for immediate integration into the system housing (level 3). 

This example strengthens the roadmap depicted in Figure 4. 
Going beyond this module form factor, the scope of the SiP concept may expand to envelop the entire system, i.e., 

as soon as full functionality is provided by one service provider within the value chain – leveraging all needed 
technologies for system creation.  An example for this could be current next-generation smart cards with a wireless 
interface for communication and power, crypto-controllers, and biometrics (sensor and controller) functions, as 
shown in Figure 17. 
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Figure 17: Biometry (fingerprint) enhanced pay-card [source: Master Card & A.D´Albore et al, 2018] 

In such a context, precision assembly as well as flex-fold assembly, micropart assembly and handling of batteries 
would also become part of the subsequent value chain for SiP assembly, meaning that the current distinction between 
OSAT, EMS and OEM, blurring for many years, is now reflected also in the packaging family. 

1.3.7 Precision Assembly 

In addition to the Packaging Toolbox details described in 1.1 – 1.3.6, many of the concepts rely on Precision 
Assembly and Processing, since with a growing number of parts in a SiP/module, this aspect becomes mission 
critical. 

Generally speaking, assembly had been the domain of EMS or OEM service providers.  With the advent of SiP, 
there is an observed shift in the value chain, where – for example for FO-xLP or passive components – precision 
assembly with tight tolerances and critical process parameter compliance has become a domain of OSATs.  For 
example, in order to provide a FO-xLP SiP, the manufacturer needs to accurately place the chipset and the passive 
components in their positions, allowing for a suitable interconnect technology to be used (eg, RDL-first), or collective 
wiring within tight tolerances (RDL-last) to maximize the achievable routing density.  With CET, processing 
parameters need to be suitable not only for the components processed, but must anticipate as well the subsequent 
process steps such as reflow soldering or snap-in interconnects to the next packaging level. 

2. Challenges for the Toolbox 

The recent acceptance of SiP in the market, with its capability to fulfil the needs of challenging applications, has 
led to the situation that not only electrical systems are implementing SiP cases, but many other domains (optical, 
mechanical, biochem) are embracing the SiP concept. While currently this can be addressed over a wide variety of 
“more than Moore” approaches, roadmaps and application requirements (e.g. reliability, EDA integration, process 
compatibility) are typically not aligned for a straightforward integration but need to be engineered for each individual 
requirement. This situation will become more pronounced during the next years of tech evolution, as more application 
diversity, with their individual roadmap visions and complexity, will call upon SiP to fulfill their needs. 

Table 4 summarizes some key findings for future challenges, in comparison to the state of the art, derived from 
the earlier individual sections on interconnect (a) and package concept (b). 
 

Table 4a: Future Challenges seen from a toolbox perspective (Interconnect) 

Technology Toolbox      

expectations chipsize chip I/O magnitude chip pitch chip count max. # of domains served 
  

[mm] 
 

[10s, 100s, 1000s] 
 

[µm] 
 

[#] 
[electrical, optical, 

mechanical, biochem, …]
Wirebonding >40mm 100 15 8 4 
FlipChip Bonding >40mm 1000 10 8 (TSV stack) 4 
RDL Redistribution Layer >40mm 100 5 3 2 
TxV´s n/a 1000 25 2 2 
Solder Ball n/a 1000 15 2 1 
Hybrid Bonding Inteconnect >25mm 1000 1 6 4 
   
suitable chip size: Interconnect technology expected 

   

chip I/O magnitude: capability derived from technical feasibility target 
   

feasible chip pitch: derived from currently envisiones implementations 
   

served chip count: derived from currently envisioned implementations 
   

domains served: derived from currently envisioned implementations 
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Table 4b: Future Challenges seen from a toolbox perspective (Package Architecture) 

Technology Toolbox      

expectations chipsize chipI/Omagnitude chip pitch chip count max.#ofdomainsserved
  

[mm] 
 
[10s, 100s, 1000s] 

 
[µm] 

 
[#] 

[electrical, optical, 
mechanical, biochem, …]

Package on Package >30mm 100 depending on internal 6 4
Embedded Chip Technology >40mm 1000 25 6 3
FO‐W/PLP >40mm 1000 25 4 4
      
Precision Assembly and Processing <0,05mm, >40mm 10…1000 10 >10 >3
      

suitable chip size: Interconnect technology expected 
   

chip I/O magnitude: capability derived from technical feasibility target 
   

feasible chip pitch: derived from currently envisiones implementations 
   

served chip count: derived from currently envisioned implementations 
   

domains served: derived from currently envisioned implementations 
   

 
The omnipresent imperative to reduce pad-to-pad distance and pad size will pose a continuing challenge, as was 

seen in the past.  Notably, some technology approaches find it easier than others to address this challenge (e.g. flip 
chip with micro-bumps, hybrid bonding interconnects) while other approaches (e.g. FO-xLP and wirebond) will see 
challenges due to the process constraint itself or the exponential increase in new infrastructure cost to go to smaller 
feature sizes (i.e. from ~10s of µm to ~1µm). 

All tools, however, will need to deal with growing chip sizes to cover the larger functionalities offered by the 
chips, and thus larger numbers of I/O to be routed between the SiP’s components.  At this point, novel components 
such as IPD’s or integrated energy storage do not increase the challenge for the evolutionary aspects of packaging, 
but instead do add challenges to the processing itself – e.g. with thermal constraints limiting the package stress effect 
on a component’s performance. 

Another aspect unique to SiP is the “more than Moore” perspective offered.  In addition to the electrical domain, 
multiple additional functionalities (e.g. non-electronic sensing, optical, even bio-chemical) will emerge as SiP 
functionalities with inherent multi-domain data fusion, driven by Internet-of-Things (IoT) and edge computing.  Here, 
individualization needs of the SiP implementation will likely prevent any standard approach, but the technology 
toolbox will be open for this kind of diversification. 

Opportunities to push electronics packaging via this toolbox approach are challenging, since the vast range of 
sensors will not allow immediate ultraminiature integration – so in order to achieve a small, flat target form factor of 
the entire SiP’s functionality, electronics will need to be integrated with the best-of-class technologies. 

This has implications for the choice of toolbox technologies for such multi-domain SiPs – e.g. due to the required 
loop geometry, wirebonding can only achieve a certain minimum thickness.  Fan-out technologies will be challenged 
to deal with warp and controlled mold material flow in ultrathin scenarios.  Since over the next five years more 
product-driven challenges than technology-provided solutions (for one given process) exist, we can anticipate that 
there will be a healthy and dynamic mix of technologies within an SiP package. 

Tables 4a and b will be – in the evolution of fine-line structuring on any kind of substrate, e.g. improved 
lithography tools, improved resists and electrodeposition (ED) technologies – benefitting from past developments 
derived from the semiconductor industry.  However, this approach will put an emphasis on process speed and cost 
benefits over the extreme precision required by the current generation of semiconductors. 

The next generation of wirebonds will make use of novel materials with improved mechanical strength and process 
properties, which allow the achievement of finer pitches. 

Flip chip assembly with finer pitch may need to move away from melting solder bumps and toward copper pillar 
bumps with, for example, reactive contacts to ensure similar process speeds as are currently established for mass 
reflow processes, but at much smaller pitch. 

Thin chips with currently 30 to 50µm thickness will eventually be thinned down to 15µm in order to comply with 
future thinner dielectric layers used for the embedded-chip packages.  This will allow stacking more chips per volume 
and maximizing functionality.  In order to achieve the routing density necessary for connecting the increased number 
of IOs, not only lines/spaces need to be decreased but also the size of vias and alignment precision of blind- and 
through-via fabrication will have to improve.  Laser processes that dynamically adapt to die shifts and tolerances will 
enable this future. 
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The main challenge at the moment for panel integration (section 1.3.4) is the missing standardization on panel 
formats.  SEMI has now started an initiative on the standardization topic.  After conducting a costumer survey on 
preferred panels sizes, a task force has been established working on a first proposal of a standard. 

However, an easy upscaling of technology when moving from wafer-level to panel-level is not possible.  
Materials, equipment and processes have to be further developed or at least adapted.  Consider the carrier material 
selection for a chip-first approach: not only the thermo-mechanical behavior but also properties such as weight and 
stability need to be considered.  Pick-and-place assembly on carrier is independent from wafer or panel formats and 
causes a bottleneck.  Here new equipment or even new approaches for high-speed but also high-accuracy assembly 
are required.  Compression molding is typically used for chip embedding and to form the reconfigured wafer or panel.  
Liquid, granular and sheet-type molding compounds are available.  All allow chip embedding with pros and cons in 
cost, processability and also cleanroom compatibility.  For redistribution layer formation, a large variety of 
lithography tools and dielectric material options exist.  For dielectrics, photosensitive as well as non-photosensitive 
or liquid versus dry-film materials can be considered.  Mask-based lithography such as stepper technology, as well 
as maskless-based tools such as laser direct imaging (LDI), are available for panel sizes.  Both offer different 
capabilities and strategies to overcome challenges such as die placement accuracy and die shift after molding.  Finally, 
solutions for grinding, balling and singulation are needed.  Manual and especially automated handling of molded 
large panels including their storage and transport is still an open topic, since until now only custom-designed 
solutions exist.  However, there are many process flow options applicable to different applications.  But still the 
question on “where is the sweet spot” taking performance, yield, cost and panel size into account has not yet been 
answered. 

Aside from the grand challenges, technological details in each aspect may prove critical showstoppers, e.g. Cu 
low-k at fine pitch, and should not be neglected.  In many areas, future development will be necessary 

In summary, while each subset of technologies made available by the toolbox will offer solutions to individual 
challenges, the success of a given implementation will rely not only on technical feasibility, but also on the cost for 
implementation, future material development, and preferred choice of architecture (i.e., a platform for a target 
application). 

Table 6 summarizes some of the considerations. 
 

Table 6: Some key influential parameters for the adoption of a given innovation for future SiP 

# Challenge Influential Factors 
Expected Impact Value  

(1 lowest, 10 highest) 
1 Material Cost, Properties, Architectural Implications 5
2 Cost of SiP Cost vs. Benefit 6
3 Technical Feasibility Future-proof, cost, manufacturing infrastructure, 

scalability 
7 

4 Platform Requirement Application driven, manufacturing infrastructure 8
5 Performance Minimum size, maximum functionalities 2

Application Perspective 

While obvious technological challenges persist in the evolution of SiP, the requirements and challenges are 
expected to come from the large diversity of applications.  Some highlight applications, with their current state-of- 
the-art implementation into SiP (or at least miniature system), are provided in this section, with trends addressing the 
challenge of SiP integration. 

 

Power Functionalities: With the introduction of Wide-Band-Gap (WBG) power semiconductors such as silicon 
carbide (SiC) and gallium-nitride (GaN), power systems in a package are becoming available.  Including part of the 
driver and the DC-link in the package, plus an output inductor and/or a transformer, helps to make full use of the 
possibilities offered by very fast-switching devices and thus high switching frequencies.  To enable fast switching (at 
up to 500 kHz) and yet keep losses and EMI issues small, packages with very low and well known parasitic 
characteristics are needed.  Besides the electrical package design, thermal management is another big challenge.  High 
power densities like 200 W/cm3 demand a careful construction of thermal paths, EMI compatible design and careful 
material selection. 
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Figure 18: Example for an EMI-optimized SiC package with part of the driver and the DC-link included  
[courtesy Fraunhofer IZM] 

MEMS Functionalities: Autonomous driving, smart homes and buildings are some of the main drivers for sensor 
modules.  MEMS and sensor packaging in general entails many challenges including stress sensitivity, open access 
to sensor surfaces, and material and process compatibility to the sensing functionality.  For multi-sensor and 
heterogeneous integration, these challenges gain even more importance as different demands come together.  These 
demands strongly move MEMS packaging solutions from the traditional wire-bonding (WB) package to a wafer- 
level package (WLP).  When MEMS packaging evolves into 3D WLP, the key approach of vertical integration to 
replace traditional WB interconnections is the through-silicon-via (TSV) technology. 

As recent examples, a MEMS gyroscope and accelerometer package including a signal processing ASIC from 
BOSCH used in the Apple Watch 3 is shown in Figure 19, featuring a fully contained solution for inertial navigation 
in a 2.5x3x0.6mm package using wirebonding on active circuitry and an HDI substrate for an LGA-type overmolded 
package. 

Figure 19: BOSCH SP18382 IMU [courtesy of SystemPlus, France] 

Another innovative approach leveraging multiple interconnect technologies from the above toolbox is given in 
Figure 20, featuring a 6-axis accelerometer, which is composed of a MEMS die stacked on top of the ASIC die, with 
both dies connected through gold wire.  Additionally, it’s worth mentioning that the output was routed through TSVs 
inside the ASIC die with solder balls as terminal attachments.  In this way unsurpassed miniaturization is achieved 
while maintaining flexibility with respect to ASIC and MEMS dimensions. 

 

Figure 20: MEMS based accelerometer system 
with TSV, WL-overmold and stack wirebond 



July, 2019  SiP and Module System Integration 

HIR version 1.0 Chapter 21, Page 17 Heterogeneous Integration Roadmap 

Complex IoT devices, Edge Computing: Devices forming the “internet of things” consist not only of a processor 
with an IP stack and RF interface, but also a need for sensing and interacting with the ambient.  Currently, devices 
like IoT cameras, smart speakers, and smart home appliances are dedicated products on their own, but are due to be 
integrated into everyday appliances – this means that OEMs will ask for added functionalities such as power outlet 
integration, lamp/lighting integration, and interactive devices in the medical field.  One attractive example, showing 
image sensors integrated with DSP/µC solutions for autonomous vehicles, makes use of embedded chip technology 
(chip in package, CET) and adds the camera chip/optics to complement the system – as small as a quarter dollar.  In 
this example, challenges faced include: 

 Wiring density in 3D 
 Thermal management 
 COTS and bare-die co-assembly and processing 
 Multi-domain testing challenges 

This example neatly showcases how future SiP applications will push the envelope not only on the technology 
side, but also for adjacent tech fields, sourcing and manufacturing infrastructure. 

 
 

 

 

 

 

 

Figure 21: Fully integrated camera/DSP solution as IoT security device [courtesy TecVenture GmbH] 

Artificial Intelligence Integration into SiP: Artificial Intelligence (AI) is currently associated with cloud services 
running large databases and supercomputers.  With Nvidia, Intel, AMD and Qualcomm pushing into that area with 
number-crunching GPU architectures, it is just a matter of time until the trend towards “mobile AI” (i.e. like Google’s 
TPU) becomes a mainstream technology and will offer specific challenges to a SiP integration.  Currently, car makers 
and drone manufacturers look for AI to overcome the problem that, in a dynamically changing surrounding, hard-
coded routines cannot ensure proper operation.  AI chip sets initiated from these application areas will expand into 
everyday devices.  As these “brains” will have to be ultramobile, miniature and with dedicated sensor interfaces for 
their specific ambient, an SiP implementation may allow AI to work better, faster and with lower power requirements 
than a non-dedicated approach using standard components built together in a joint housing.  Thus, TSV chip stacks 
in combination with flip chip and embedded chip technology can start as the packaging tool-set, with alternatives 
growing with the application diversity. 
 

  
Modules: Applications using SiP as a highly functional component – as described in the previous setting – are 
becoming mainstream.  However, identical integration pathways and system integration depth may lead to the SiP 
serving as the main (and only) functional part in the system itself.  Here, SiP combines microprocessor, memory, 
sensors, RF and even other SiP components into a functional unit with a defined set of interface elements – but instead 

Figure 22: NVIDIAs Pascal SiP Package 
suitable for next-gen AI processors [8] 
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being used as a highly functional component, only some periphery items (e.g. battery, display) are added for the full 
product.  Modules, as described as part of the Packging Toolbox in 1.3.7, are simultaneously pushing the envelope 
for applications and thus need to be looked at also from this perspective. Eg., as depicted in Figure 23, the distinction 
between the level 1, level 2 and even level 3 packaging hierarchies are blurred in the example of a smart watch, 
showing the high specificity a SiP can offer for a given product. 
 

  

Main Challenges from the Application Perspective 

Direct application-related challenges 
 

1. Functionality will increase 
Due to the growing level of diverse functionalities, co-design becomes both more relevant as well as more difficult; 

functionalities may have an influence on each other. 
 

2. Non-electronics will become a major part of functions 
Co-Design of non-electronic functionalities (i.e. gas or fluidic channels, optical elements) which in the past had 

been done by separate stakeholders for large systems, now have to be integrated by manufacturers earlier in the value 
chain.  Here, neither adequate EDA tools nor engineering experience is available. 

 

3. Assembly proceses will change 
The challenge in SIP manufacturing – especially for multi-domain (more than Moore) functionalities – lies in the 

assembly process itself.  Touted as the next-level multi-chip module (MCM) assembly technology, it requires the 
ability to assemble and interconnect several die not only horizontally (with die placed side by side), but vertically as 
well (wherein several die are placed on top of each other), while taking due consideration to specific challenges like 
signal integrity, hardware built-in security features and media access. 

 

4. Reliability requirements have to be adapted seamlessly to application needs 
New and hitherto unaddressed reliability challenges as for automotive (autonomous vehicles offering Mobility as 

a Service), aerospace (e.g. drone delivery), and satellite (microsatellites with unprecedented performance) will drive 
the technology and materials evolution, calling for a close interaction between service providers (who will take the 
role of the end-user), product manufacturers (who will be more and more driven by services) and technology 
providers (who need to know earlier about the challenges their implementations will face).  While there are some 
clear trends for future customer needs, such as for AI and the mobile revolution, business models of service providers 
will also have an influence on the choice of a target implementation for SiP. 

Current reliability standards adhere to today’s application-oriented environmental and operational challenges.  
Future applications may require a drastically different approach.  While current automotive scenarios need to consider 
multiple on-off cycles under various circumstances, future autonomous always-on mobility services will operate a 
car 24/7 without significant temperature changes, but under varied power loads and long-term exposure to 
contaminants.  Medical devices will not only be used for a span of years, but may need to maintain their operation 

Figure 23: Apple Watch Gen 3 as an example for 
a module type of SiP  

(courtesy YOLE Developpement) 
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from birth to death of a human, asking for 80+ years of proven reliability.  New power-generation schemes 
(decentralized, as for offshore wind, solar farms) pose substantial opportunities for the electronics industry, but – as 
critical infrastructure – become extremely sensitive to reliability issues for their diverse fields of deployment. 

 

Materials 
5. Materials improvements are needed 

While the electronics industry and the beforementioned toolbox build on evolutionary improvements of the 
materials (i.e. Al->Au->Cu->CuPd wires, nano-filled epoxies, …), novel materials may change significantly the 
impact factor indicated in Table 3, shifting the favor for a given platform completely and thus upending established 
industries.  This has been observed with materials evolutions (e.g. standard molded packages giving way to high- 
density multi-chip modules due to high-flow materials) and will be more difficult to deal with by industry if disruptive 
innovations are adopted.  For example, new materials will enable the package to provide a functionality on its own, 
such as compensating for thermal mismatches, managing thermal transients, addressing reliability aspects (e.g. self-
repair and failure indication) or allowing high-performance individual packages to be printed on demand from 3D 
print materials and technology. 

 

Physics-related challenges 
6. Thermal Management becomes a mainstream challenge 

Heat dissipation is another challenge in the development of SiPs.  Taking chips off-the-shelf and using them in 
SiPs can result in junction temperatures beyond their specification, since these chips were designed to dissipate heat 
through their own packages.  Crowding them together inside a SIP can generate enough heat to be of major concern 
in the field.  Pursuing the path towards compressing more functions in a smaller volume, thermal dissipation and heat 
management become thus a stronger issue.  This is especially relevant in the context of the trend to put SiPs in the 
core of mobile devices, where traditional heat management concepts (heat pipes, ducts, heavy heat sinks) fail to work.  
This is further addressed in Chapter 20. 

 

7. Empirics/statistics is needed in reliability assessment for a deeper understanding 
While previous aspects of reliability focused on changes in operating conditions, reliability considerations also 

need to shift their basis from the current empirical and statistically assessed prediction towards a physics-of-failure 
related model, which anticipates the core reliability affecting parameters encountered in an SiP.  Since simple 
approaches for geometry and material combinations will not adequately reflect the situation that a structure 
experiences under operation, a thorough understanding of the root causes for failures and the use of computer-assisted 
modeling will be required to deal with the diversity encountered in future SiPs. 

 

8. Form-factor challenges will persist 
SiP form factors will diversify with the need to shrink well established functionalities (e.g. accelerometers and 

intelligent micro-actuators), but also growing in size to address significantly higher complexity levels as well as 
intrinsic application needs (camera systems, autonomous processing of large data amounts, …).  SiP modules will 
take over the mainstream from single-chip BGAs.  Although integration technologies will limit the obtainable form 
factor to the maximum size of the largest component itself, cost and performance considerations will dominate this 
aspect beyond the maximum obtainable, and toward a “system-level optimum”. 

 

9. Signal integrity becomes critical 
Currently, signals on a package are more or less governed by the clock frequency of the microcontroller used.  

While this is true for single-chip packages, a SiP that include RF radio and power-control components critically needs 
an integrated design flow that anticipates such factors as power surges to the transceiver and microcontroller.  
Consideration of signals will not necessarily relate only to electrical signals; optical communications in the package, 
or fluidic transfer bearing the “target signal”, may also be affected and in turn may affect the system’s function if not 
properly addressed early in the SiP design phase. 

 

10. Power increase will be omnipresent 
The need for increasing power – both in “smart power devices” (logic&power combined) but also with devices 

merging stronger computing power with additional functions like sensing – pushes technologies to their limits, as 
conductor line width and thickness are both governed by the current-carrying capacity as well as routing-density 
needs. 
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In addition to these changes and challenges, cross cutting aspects will also have to be addressed to enable future 
novel products. 

 

11. Testing and functional verification become more difficult 
SiP manufacturing not only offers assembly challenges, but test challenges as well (see chapter 17 on Test).  SiPs 

combine microelectromechanical systems, optoelectronic devices, various sensors, linear and digital circuits, etc., 
which were built on different wafer fab process technologies and therefore have varying excitation requirements.  
Add to this the fact that each of these system blocks requires special test methods of its own.  A test solution to meet 
the various test resources and methods required by a complex SiP can turn out to be expensive: 

 Application-specific functions (includes mixed signal, media, etc.) can be complex and costly – 
currently best assigned to the end customer who knows the SiP functional requirements best, but may 
call for an intermediate level of testing in the value chain, challenging assembly partners to serve all 
needs because of limitations of an end-user in building up a non-value-generating function in his 
enterprise. 

 Electrical, mechanical and thermal aspects need to be tested simultaneously and in interdependence. 
 Currently, most tests are done step-by-step; future test equipment may need to offer modularity to 

address testing co-dependencies for a multitude of applications. 
 Self-testing, including built-in self-test (BIST), may be a preferred solution for individual component 

performance, but will likely not allow for a joint testing of all functionalities comprising the SiP’s 
function. 

 

12. EDA-assisted co-design will become a necessity 
SiP has to be done with a system-level focus, requiring a system-to-package co-design (see chapter 13 on Co- 

Design).  Thus, the target application will benefit from the best-in-class components and optimized technology.  
Future implementations will thus require consideration not only of current 2D routing technologies, but also address 
3D routing, multi-domain interactions, and cost and lifetime considerations in one tool or a set of tools compatible 
with each other through standardized interfaces.   
 

13. WEEE and other environmental factors will remain in effect 
Laws to protect the environment have focused their perspective and implementation possibilities according to 

existing value chains.  This has led to the situation that current devices, which are not yet classifyable as SiP but more 
as “complex systems”, are neither re-usable, repairable, or re-cyclable without tremendous effort.  With highly 
integrated multi-domain-encompassing SiPs, the situation will deteriorate.  One can envision that multiple 
contradictory laws affecting a multi-domain SiP will require compliance. 
 

14. Standardization expected to focus on tool box instead of package type 
While SiPs – as for other technologies as well – will be driven by miniaturization needs, no standard approach 

will fit a unique customer’s requirements.  This is because no single functionality is offered (as for single-chip 
packaging), but a customer-specific application must be designed from a system perspective.  However, some 
technologies lend themselves better than others to serve as a founding family with the capability to minimize NRE 
efforts and cost.  Here, platform technologies may be useful to serve a majority of needs, but eventually a 
methodology that includes EDA capabilities to predict performance, cost, reliability and ecological footprint will be 
required.  Even with platform-level standardization as a technology basis, an engineering model embracing this 
holistic approach will need to be part of a standardization process. 
 

15. Safety and Security (S&S) aspects need to be addressed at the level of design and manufacturing 
As of today, S&S aspects are delegated to the software running on the SiP’s functionality.  The hardware itself 

can serve with its physically uncloneable features (PUF), with specific tamper proofing technologies designed into 
the hardware and Hardware-Software-CoDesign will pave the way to more secure, safer future products.  See further 
discussion in Chapter 19. 
 

16. Cost reduction needs are omnipresent 
Complex systems in combination with many different options are inherently non-cost effective.  With new 

platforms such as Fan Out Packaging or EMIB, cost for SiPs serving new applications can be reduced while retaining 
functionality needs.  But increased functions will also inherently come with an increase in cost; a balance must be 
struck to maximize functionality so the target application remains cost-effective, which may preclude a fully 
integrated SiP implementation in favour of a more modular approach.  Since the cost target is ultimately defined by 
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the end-user, the total partitioning of the system efficiency and cost will call for a closer cooperation between 
semiconductor manufacturers and the package (SiP) provider to meet these goals. 

Notably, customer requirements and cost-reduction needs thus will provide additional issues to be considered, 
while materials innovations and platform concepts may ease issues which seem to pose significant hurdles for 
technology and application evolution. 

Table 7 provides a high-level synopsis of the foreseeable challenges, outlined above, leading toward a SiP future: 
 

Table 7: Key Challenges for the adoption of SiP in the mass market 

 Challenge State of the Art Future Perspective 
Application Related 

1 
Functionality Increase 

Single domain functionality Multi domain functionality 

2 
Non-electric functions 

Separate SiP approach, separated 
value chain segment 

Integrated in one flow of value chain 
creation 

3 
Assembly 

Single technology use Choice from a technology menu built 
from a compatible tool box 

4 
Reliability 

Standards derived from “typical 
applications” and adapted to actual use 
case 

Novel applications driven by new 
business models may render current 
standards obsolete 

Material Related 

5 Material Material evolution driven by integration 
requirements (e.g. high flow epoxies, 
CuPd wire) 

Material revolution driving integration, 
disrupting industries´ value chains 

Physics Related 
6 Thermal 

Management 
passive and active cooling built after 
simulation/validation assessment 

Thermal-Electric and Mechanical Co- 
Design including the SiP integration site 
via CAD Tool 

7 Reliability Empirically derived statistical models Physics of Failure Modeling 

8 Form Factor SiP design targeting maximum package 
efficiency limited by physical geometry 

SiP design with as-needed efficiency, 
limited by cross-cutting aspects, 
interdependencies 

9 Signal Integrity Individual design and test Building blocks for S.I. 
10 Power requirements <50W/cm3 200W/cm3 

Cross Cutting Aspects 

11 Test Single-domain testing, sequential test of 
multiple-domain functions 

Simultaneous testing of multi-domain 
features to assess cross influences; testing 
specifically for target application 

12 EDA assisted 
CoDesign 

Different, incompatible EDA suites EDA suites with a common referral 
language and APIs 

13 WEEE Electronics-only functionalities well 
addressed 

Multi-domain functionalities difficult to 
address 

14 Standardization Standards in formfactor of individual 
packages 

Platform technology with interface to 
EDA tools (“VHDL for SiP”) 

15 Security Aspects No built-in security features Depending on application, specific 
security features built into hardware may 
be needed 

16 Cost Reduction Cost challenges are addressed only on one 
level in the value chain 

 System level perspective to leverage 
synergies surpassing individual levels of 
value chain 
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Glossary 

 
BGA ball grid array MCM multi chip module 
BIST built in self test MEMS micro electro mechanical system
CET chip embedding technology MSL moisture sensitivity level 
CMOS complementary metal oxide semiconductor NRE non recurring engineering 
COTS custom of the shelf ODM original device manufacturer 
CSP chip scale package OEM original equiment manufacturer 
ED electrodeposited OSAT outsources semiconductor assembly and test
EDA electronic design automation PoP package on package 
EMI electromagnetic interference PUF physical uncloneable feature  
EMS electronic manufacturing service QFP quad flat package 
eWLP embedded wafer level package, TM of Infineon RDL redistribution layer 
FOPLP fan out panel level package RF radio frequency
FOWLP fan out wafer level package SiC silicon carbide
GaAs gallium arsenide SiGe silicon germanium 
GaN gallium nitride SiP system in package 
GPU graphic processing unit SiPiB system in package in board 
HAR high aspect ratio SiPoB system in package on board 
HDI PCB high density integrated printed circuit board SMD surface mounted devices 
IoT internet of things SO small outline (package) 
IPD integrated passive devices SoC system on chip
KGD known good die TPU tensor processing unit 

LDI laser direct imaging TxV
through-x-via, with x being silicon, glass or 
polymers

LGA land grid array WLP wafer level package 
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