

Heterogeneous Integration: 2D - 3D Interconnects 2023 Chapter

Presenter : Ravi Mahajan (Intel Corporation)

2023 Chapter Contributors

Ravi Mahajan (Chair)	Zhiguo Qian	Subramanian Iyer	Kemal Aygun
Jan Vardaman	Debendra Mallik	Kaladhar Radhakrishnan	Srikant Nekkanty
Tom DeBonis	Dishit Parekh	Vidya Jayaram	Krutikesh Sahoo
Kanad Ghose	Raja Swaminathan	Adeel A. Bajwa	Paul Franzon
Gamal Refai-Ahmed	Kaushik Mysore	Peter Ramm	Steffen Kroehnert
Venky Sundaram	Markus Wimplinger	Thom Gregorich	Sam Karikalan
Dave Armstrong	Chintan Buch	SB Park	Takafumi Fukushima
Chandrasekhar Mandalapu			

HETEROGENEOUS INTEGRATION ROADMAP

Chapter Objectives

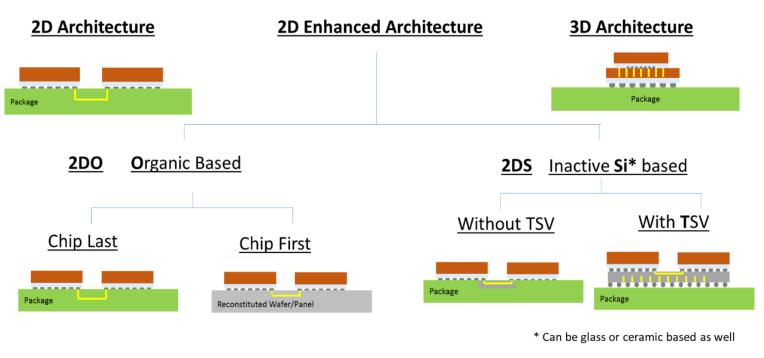
- Define and proliferate a standardized nomenclature for package architectures covering and clearly identifying, 2D and 3D and hybrid packaging constructs
 - Comprehend all HI announcements including Wafer-scale constructions.
- Define and disseminate key metrics driving the evolution of the physical interconnects in these architectures
 - The chapter lists their current values and projections for the next generations
- Chapter is organized into 4 primary areas:
 - Converged Nomenclature Framework for 2D , 3D and hybrid Architectures
 - Key Metrics:
 - Design Attributes
 - Electrical Attributes including Signaling and Power Delivery
 - Challenges
 - Discussion

2023 Chapter Key Summary

- Nomenclature from a few years ago holds for the most part but will need an update (Thanks to Prof Fukushima & Venky for highlighting this). Mid-Year refresh proposed
- WB section is weak and needs help from experts like Jan Vardaman, Ivy Qin and Adeel Bajwa
- AI/ML driven increases in compute demand are forcing some non-linearity in our estimates and to respond, the BW roadmap has been expanded
- Lots of publications on standardized D2D links have appeared and references are updated to be fair to all and historically consistent
- Tom Gregorich made an excellent suggestion to define an interconnect landscape. It is a good idea but will need careful thought and argues for a mid-year update
- Table 5 on architecture-process elicited some good feedback. Have requested Dishit Parekh, Vidya Jayaram, Krutikesh Sahoo, Jan Vardaman and Adeel Bajwa to help get this table updated and correct.

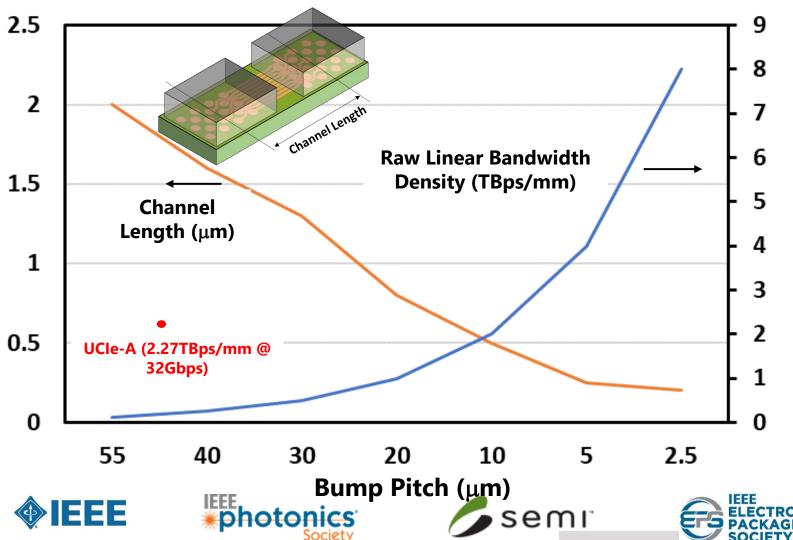
Interconnects

- **Die-Die Interconnects:** Interconnects between stacked die that enable vertical interconnects between multiple die in a 3-D stack *Covered in this chapter*
- **On-package Die-Die Interconnects** i.e., 2D and Enhanced 2D Interconnects: Interconnects between die within the package that enable lateral connections *Covered in this chapter*
- **Die-to-Package (or to substrate) Interconnects:** Interconnects between the die and the package typically known as the first level interconnect (FLI) *Covered in this chapter*
- Within Package Interconnects: Interconnects within the package that enable lateral connections Covered in the Substrate Section of the Single Chip and Multi-Chip Chapter
- Package to Board Interconnects: Interconnects between the package and the next level, which is typically the motherboard, referred to as the second level interconnect (SLI) Covered in this chapter
- Package on Package Interconnects Covered in this chapter



Nomenclature

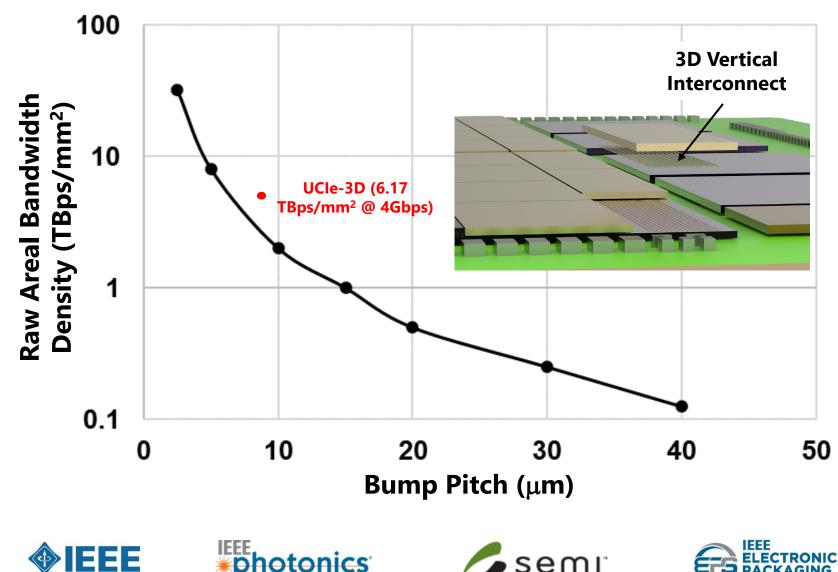
- Add Chip-Mid & Improve Picture (Ref: D. C. Hu et al., "2.2D Die last Integrated Substrate for High Performance Applications," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021, pp. 157-163)
- Clarify 2DO includes organic interposers
- Add a broader interconnect hierarchy picture



Non-Unique On-Package Planar Interconnect Scaling Roadmap

@ 32Gbps UCle-A theoretical BW@ 45µm pitch is 2.2716 TBps & this roadmap states @ 3Gbps & @ 40µm pitch a theoretical BW of 0.25TBps is possible. There is no discrepancy in the numbers and modulating speed (hence power efficiency) is a knob for scaling BW \rightarrow lots of room to grow

• Extended to 7 generations



On-Package 3D Interconnect Scaling Roadmap

photonics

semi

- Extended to 8 generations
- Signaling speed \leq 1.8Gbps (speed is a knob \rightarrow room to grow

ECTRON

Signal Integrity Attributes

Generation Number ->		1	2	3	4	5	6	7
Linear Bandwidth Density (GBps/mm)		125	250	500	1000	2000	4000	8000
Channel Performance	Channel Length (mm)	<2.0	<1.7	<1.4	<0.8	<0.50	<0.25	<0.15
	Bump-to-Bump Channel RC (ps)	<10	<10	<10	<10	<10	<10	<10

Channel Signaling Characteristics for 2D and Enhanced-2D Architectures (RC Dominated)

Generation Number \rightarrow		1	2	3	4	5	6	7	8	
Areal	Bandwidth	Density	125	250	500	1000	2000	8000	32000	200000
(GBps/mm ²)										
Bump Capacitance (fF)		<30	<22	<15	<10	<7	<5	<3	<1	

Channel Signaling Characteristics for 3D Architectures (Capacitance Dominated)

Power Delivery Attributes: Area Interconnects for 2D and 3D Architectures

Year		2026	2028	2030	2032
Maximum Core Power Density (W/mm ²)		7	10	14	20
Sustained Core Power Density (W/mm2)		1.4	2	2.8	4
On-die MIM Capacitance Density (nF/mm ²)		210	320	520	800
VR Power Density (W/mm ²)		1.4	2	2.8	4
Ceramic Cap Density (µF/mm ²)		14	20	28	40
Sustained Bump Current Carrying Capability (A/mm ²)	1.4	2.1	3.2	5.2	8

Power delivery Attributes for 2D, Enhanced-2D and 3D Architectures. It should be noted that power delivery attributes are agnostic to the architecture

Cross-TWG Collaboration Opportunities

- Substrates and Power Delivery are key areas of Interaction
- This chapter (with appropriate calibration) should be the basis of driving on-package signaling definition

Back-up

Metrology Focus Areas*

- Characterization Metrologies for Model development and Validation
 - Warpage as a function of temperature
 - Properties (Mechanical, Thermal, Electrical, Interface)
- In-Situ (Fast & Accurate) Process Metrologies
 - Defects (Voids, Cracks, Delamination, Residue)
 - Dimensional metrologies
- Reliability
 - Defects (Voids, Cracks, Delamination, Residue)
 - FA/FI Techniques/Enablers

* Partial List. See refs (e.g., SRC Needs (<u>https://www.src.org/program/grc/research-needs/</u>) for a more detailed discussion

