

Heterogeneous Integration Roadmap Symposium 2024

Additively Manufactured Electronics (AME) for Heterogenous Integration

Kris Erickson

Meta

Feb '24

Agenda

- 1. AME for HIR Chapter Update
- 2. AME Applications
- 3. AME Growth Needs
- 4. Chapter Engagement & Next Steps

Large collaborative team for creating full content!

Finalizing as a Chapter within HIR 2024

Technical Working Group Contributing Members

Kris Frickson (Meta)

Eric Dede (Toyota Research Institute of North America)

Jarrid Wittkopf (HP Labs)

Christine Kallmayer (Fraunhofer IZM)

HETEROGENEOUS INTEGRATION ROADMAP

Dishit Parekh (Intel)

Alex Cook (Nextflex)

Jeroen van den Brand (Holst Center)

Mike Newton (Sciperio)

Annette Teng (Promex)

David Bowen (Laboratory for Physical Sciences)

Mark Poliks (Binghamton U)

Girish Wable (Jabil)

Martin Hedges (Neotech AMT)

Dean Turnbaugh (NTV)

David Weins (Siemens)

David Rosenfeld (Celanese)

Markus Scheibel (Heraeus)

Chapter Layout

Number	Section	Sub-Section	Write-up Lead
1.1	Introduction	Executive Summary	Kris Erickson
1.2		Overview	Kris Erickson
1.3		AME Benefits & Drawbacks	Jeroen van den Brand; Rich Neill
2.1	AME Fabrication Methods	FFF/FDM	Martin edges
2.2		Powder Bed-based	Jarrid Wittkopf
2.3		SLA/DLP	Kris Erickson
2.4		Screen Print	Girish Wable
2.5		Additive + Subtractive	Alex Cook
2.6		Aerosol Printing	Martin Hedges; Rich Neill
2.7		Electrohydrodynamic Jetting	Dean Turnbaugh
2.8		Thermoforming/MID	Christine Kallmayer
2.9		Piezo Valve	Martin Hedges
2.10		Inkjet	Kris Erickson
2.11		Laser Direct Structuring	David Bowen
3	AME Design Tools	Design Tools - 2D, 3D	David Weins; Martin Hedges
4.1	AME Materials	Conductive Materials	Markus Scheibel
4.2		Printed Thick Film	Dave Rosenfeld
5.1	AME Applications	Printed Passives	David Bowen
5.2		Thermal	Ercan M. Dede
5.3		Optical/Photonics	Annette Teng
5.4		AME for Wearables	Dishit Parekh
5.5		Printed Sensors	Christine Kallmayer

Additively Manufactured Electronics (AME)

AME = Printed Conductor + (Printed/Existing) Dielectric + (optional) Additional Processes

2.2 Thinned silicon ICs

100 -IDTechEx Research Slot die coating Offset • Rotary screen (≥1) Flexo-Gravure -1 -Screen Function Inkjet stretch dielectric TIM conductor resistor encapsulant attach via fill metal, electrically conductor non-metal thermally low TCR, conductive/ or insulator flex anisotropic conductive, moisture Insulating, electrical, PTC, sintering, adhesive, Adhesive, Adhesive, barrier thermal Formulation Resistivity hybrid, PCM, solderable Dk Df polymer anisotropic adhesive Throughput (m²/s) plateable 10-2 polymer thick film, -LIFT frit based, Laser structuring, particle-free, Additional property thermoformable, high reliability, Substrate hybrid particle-free/particle. requirements composite harsh environment, flex/stretch Impulse printing liquid metal. nano-particle Aerosol Initial AME Decision Matrix unique filler morphology, AME Processing temperature, mixed morphology, Processing hierarchy Selection novel carbon, Glass/ceramic 10-4 base metal, Ultra precise precious metal, deposition alloys, 2D, 2.5D, 3D, aqueous, solvent, conformal metal solventless dispensing impact flexographic thermal transfer LIFT tape/film screen stencil jetting gravure preform 10-6 Method of Applying #thanks to Dave Rosenfeld, Celanese, and AME for HIR group AFM with ink Electrohydrodynamic 10-8 Very High Resolution **High Resolution** Medium Resolution Low Resolution (1-10 µm) (10 - 50 µm) (>50 µm) 0.1 µm 1 µm 10 µm 100 µm 1000 µm

AME Considerations

Printing Methods for Electronics: Resolution vs Throughput

Minimum feature size (um)

[HIR 2021 version (eps.ieee.org/hir), Ch. 8, Single and Multichip Integration] **In-progress** 2024 on HIR Chapter on AME

AME Comparison Table

		Feature Created				Resolution			Material Properties			Manufacturing Properties			
Туре	Process	Conductive	Dielectric	Conform -ality	Structural	Resolution X,Y (micron)	Resolution Z (micron)	Features sizes (Line/Space[L/S]; dielectric[E]) (micron);	Vias possible	Deposited Materials Forms	Multi- Material?	Max Bulk Conductivity	Build Height per pass (micron)	Deposition Speed (m2/s - areal; mm/s - linear)	Build Dimensionalit y (0D,1D, 2D, 3D)
	Inkjet Printing	Х	Х	X	Х	20	17	L/S,E - 40/40	X	inks, photo-resin	Y	2.7E7 S/m	17	0.1-1 m2/s	1D
	Aerosol Printing	Х	Х	Х	0	10	2	L/S - 20	X	inks, photo-resin	Y	2.7E7 S/m	0.5-5	5-30 mm/s	0D
Direct Write & Conformal	Electrohydrodyna mic Jetting	х	х	x	0	0.5	0.5	L/S - 0.5	x	Inks, pastes, photo- resin	Y	2.7E7 S/m	0.25-1	50 mm/min	0D, 1D*
	Dispensing/Extrusi on Printing	х	х	x	0	100	100	L/S - 100	x	Inks, pastes	Ŷ	2.7E7 S/m	1-50	50-500 mm/s	0D
	Piezo/Valve Jetting	x	х	x	0	320	5-25	L/S - 320/200	x	ink, pastes	Y	2.7E7 S/m	15-25	15-50mm/s	0D
3D Printing	Powder Bed Fusion	0	х	-	x	100	80	E - 100	0	powders	Y	2E6 S/m	80-150	3D - 25 mm/hr	0D, 1D
	Stereolithography (SLA)	-	х	-	x	50-100	50-100	E - 150		photo-resin	N		20-100	20-36 mm/s	0D
	2-photon SLA	-	х	-	x	0.1-1	0.1-1	E - 1		photo-resin	N		0.1-10	100-600 mm/s	0D
	Digital Light Processing (DLP)	-	х	-	x	50-100	50-100	E - 150		photo-resin	N		20-100	3D - 10-300 mm/hr	2D
	Fused Form Fabrication (FFF/FDM)	o	О	0	x	150	50	E - 150	0	filament, granualte	Y		20-100	50-150 mm/s	0D
	SLM					50-250	50-250	200-400		metal powder	N	<i>thermal</i> - Cu** 400 W/mK			0D
	Binder Jet					100	80	150		metal powder	N	<i>thermal</i> - Cu** 400 W/mK	80-150	3D - 25 mm/hr	1D
conductive 3D Print	ECAM					30	30	60		metal electrodeposition	N	<i>thermal</i> - Cu 400 W/mK			2D
Planar 2D Print	Screen Printing	x	х			10-50	25-40	L/S, E - 50/50	x	pastes	Y	2.7E7 S/m	1-50	0.01-1 m2/s	2D
	Laser Direct Structuring***	x	0	x	0	1	1	L/S - 25/25	x			3.48E7 S/m			0D
Hybrid & Structural Electronics	Additive + Subtractive	x	x	x	x	10		L/S - 15/15	x					1,000 mm/s OD 1E-6 m2/s 2D	0D

AME HI Applications Flex Use-case

Weight

RIGID PCBA

Board: Rigid FR4 Subtractive process Copper traces Weight (board): 17 grams Assembly Temperature – 220 – 250 deg c

> Cost: Baseline PCF - Baseline

#thanks and with permissions from Girish Wable, Jabil

RIGID-FLEX or FLEX PCBA

Flexible Polyimide Substrate

Subtractive process

Copper traces

Weight: 6 grams

Assembly Temperature – 220 – 250 deg c

Cost: Higher PCF - Baseline

Cost

Temperature

FLEXIBLE HYBRID FI FCTRONICS

Flexible Plastic Substrates Printing (additive) process Silver/Copper traces, Sensors Weight: 2 grams Assembly Temperature – 120 deg c

Cost* Lower compared to Rigid Flex or Flex PCF – Significantly Better*

* - more data needed

Benefits Leveraging Flexible

AME HI Applications Wearable Use-case

VALUE TRANSFORMATION

FLEXIBLE BENDABLE CONFORMAL STRETCHABLE LIGHT TWISTABLE THIN DIRECT-DEPOSITED 3D COST BENEFITS BOM CONSOLIDATION ASSEMBLY INTEGRATION

#thanks and with permissions from Girish Wable, Jabil

Benefits Leveraging Wearability Integration Cost

AME HI Applications Structural Electronics

Benefits Leveraging Design Freedom

AME HI Applications 3DPE Demonstrator

MJF 3DPE Demonstrator: Driving Device Complexity

Benefits Leveraging 3D Integration

AME HI Applications Optical Wirebond

Specific Unmet HI Need

Interconnection Between Optical Chips & Output Fibers

DOI 10.1364/OE.20.017667

Ultra-high Resolution 2-photon AME

TPP - Two-Photon Polymerization

DOI 10.1088/2631-7990/ab8d9a

Unique Solution Space

Index Matched Photo-resin

Automated Fabrication, Low losses, Passing Reliability Testing 400-700 GB/s Data Rate Demonstrations

Photonic Wire-bond doi.org/10.1038/s41377-020-0272-5

Benefits Leveraging Unique Need + Unique Solution

AME HI Applications Thermal

Air Cooled Heat Sinks

[https://www.shutterstock.com/]

Current

[Lazarov BS, Alexandersen J. Appl Energy. 2018;226(February): 330-339]

AM Thermal

Liquid Cooled Heat Sinks

Current

(a)

[Al-Neama AF, Thompson HM. Int J Heat Mass Transf. 2018;120:1213-1228]

(b)

Two Phase Convective Cooling

Current

(c) (d)

AM Thermal

[Jafari D, Wits. Renew Sustain Energy Rev. 2018; 91(April 2017):420-442]

[DOI: <u>10.1109/ITHERM.2006.1645335</u>]

Benefits Leveraging 3D & Design Freedom

AME Growth Needs

Productivity & Yield

[https://commons.wikimedia.org/wiki]

Product-Level Reliability

[https://commons.wikimedia.org/wiki]

Automated Inspection & Correction

[https://www.shutterstock.com/image-photo]

Design Tools

[https://www.shutterstock.com/image-photo]

Integrated Manufacturing

Leveraging CapEx Investment & Adaptability to Current tooling

- Panel Sizes
- Planarity
- Alignment
- Form Factor
- Thermal Processes

[https://www.microwavejournal.com/articles/31986]

Engagement with Chapter & Next

1. X-TWG engagement

Requesting X-TWG Feedback & Intersections Requesting X-TWG guest Speakers - Connect/present to AME chapter

2. What's Next?

- I. Finalized Version 1
- II. Determining additional areas of interest for Revision

Applications EMI shielding, RF/Antennas

Manufacturing Spray Coat

Reliability Expanding on Reliability improvement needs

