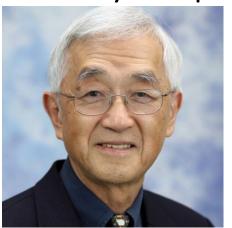


Advanced Manufacturing &

Multichip Integration TWG

Technical Working Group

February 22,2024



Today's Speakers

Bill Chen
ASE Group

Kris Erickson *META*

Sheng Li Intel

Abhijit Dasgupta *UMD*

Lei Shan *Ampere*

Benson Chan Binghamton Univ.

Annette Teng SUNY Polytechnic

Ivy Qin
Kulicke and Soffa Industries

Mark Gerber ASE Group

Srikanth Rangarajan Binghamton Univ.

Advanced Manufacturing & Multichip Integration

1. Electrical Performance

2. Thermal Management

3. Mechanical Engineering

4. Adv Manufacturing & Package Assembly

5. Wire bond Innovations

6. Flip Chip & Hybrid Bonding

7. Advanced Substrate

8. Additive Manufacturing

9. Reliability (Spun-Off: full TWG 2021)

10. Solder & Electromigration

Lei Shan

Srikanth Rangarajan

Benson Chan

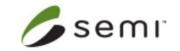
Annette Teng

Ivy Qin

Mark Gerber

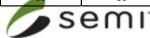
Sheng C Li

Kris Erickson


Abhijit Dasgupta

Eric Cotts

William (Bill) Chen & Annette Teng TWG Chair & Co-Chair

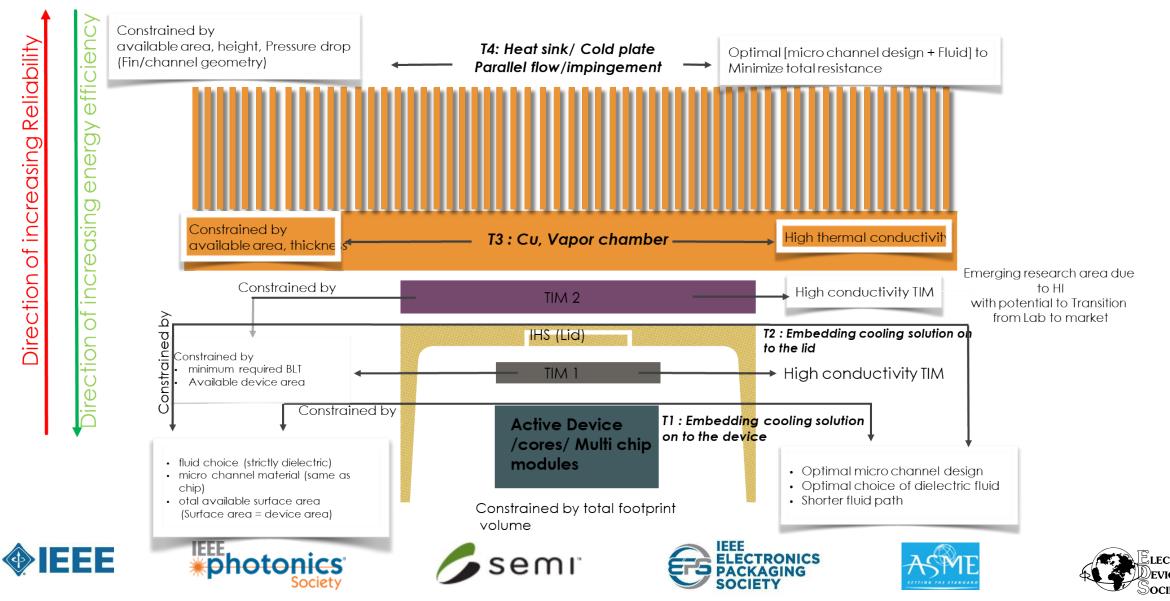


SINGLE & MULTICHIP ROADMAP METRICS

Year of Production	2022	2023	2024	2025	2026	2027	2028
On-chip feature size (nm)							
Memory (DDR/HBM)	7	5	5	5	3	3	3
Smart Phone / Laptop	5	3	3	3	2	2	2
High-performance (note1), chiplet/monolithic	5	3	3	3	2	2	2
Core Voltage (Minimum Volts)							
Memory (DDR/HBM)	1.1	1	1	1	0.9	0.9	0.9
Smart Phone / Laptop	0.8	0.75	0.75	0.75	0.7	0.7	0.7
High-performance	0.8	0.75	0.75	0.75	0.7	0.7	0.7
Package Pin count Maximum							
Memory (DDR/HBM)	288/3200	288/3200	288/3200	288/3200	350/4700	350/4700	350/4700
Smart Phone / Laptop	1212/7000	1275/7600	1275/7600	1275/7600	1396/8400	1396/8400	1396/8400
High performance (note3)	7800	7800	9600	9600	9600	11200	11200
Minimum Package Dimension (mm)							
Memory (DDR/HBM)	133/10	133/10	133/10	133/10	133/12	133/12	133/12
Smart Phone / Laptop	50	55	55	55	60	60	60
High-performance	87	87	95	95	95	110	110
Performance: On-Chip							
Memory (DDR/HBM), MHz	800	1000	1000	1200	1200	1600	1600
Smart Phone / Laptop, GHz	3.2	4	4	4.8	4.8	5.2	5.2
High-performance, GHz	8	8	9.6	9.6	11.2	11.2	11.2
Interconnect: Chip-to-Chip (note4)							
Memory (DDR/HBM), Gb/s	4.8/3.6	4.8/5.2	5.6/6.4	6.4/7.2	7.2/8.0	8.0/9.6	9.6/9.6
Smart Phone / Laptop, Gb/s	100	100	100	200	200	200	200
High-performance, Gb/s	32	32	32	64	64	64	112
Interconnect: Pkg-to-Board							
Memory (DDR/HBM), Gb/s	8/6.4	8/6.4	9.6	12.8	16	25	25
Smart Phone / Laptop, Gb/s	100	100	100	200	200	200	200
High-performance, Gb/s	56	56	64	64EEE	112	112	224

UCIe to Enable Low-Power & High-Bandwidth Chiplet Integration

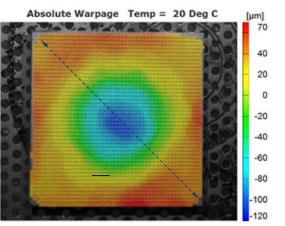
Characteristics / KPIs	Standard Package	Advanced Package	Comments
Characteristics			
Data Rate (GT/s)	4, 8, 12, 16, 24,	32	Lower speeds must be supported -interop (e.g., 4, 8, 12 for 12G device)
Width (each cluster)	16	64	Width degradation in Standard, spare lanes in Advanced
Bump Pitch (um)	100 – 130	25 - 55	Interoperate across bump pitches in each package type across nodes
Channel Reach (mm)	<= 25	<=2	
Target for Key Metrics			
B/W Shoreline (GB/s/mm)	28 – 224	165 – 1317	Conservatively estimated: AP: 45u for AP; Standard: 110u;
B/W Density (GB/s/mm²)	22-125	188-1350	Proportionate to data rate (4G – 32G)
Power Efficiency target (pJ/b)	0.5	0.25	
Low-power entry/exit	0.5ns <=16G, 0.5	5-1ns >=24G	Power savings estimated at >= 85%
Latency (Tx + Rx)	< 2ns		Includes D2D Adapter and PHY (FDI to bump and back)
Reliability (FIT)	0 < FIT (Failure I	n Time) << 1	FIT: #failures in a billion hours (expecting ~1E-10) w/ CXi Flit Mode



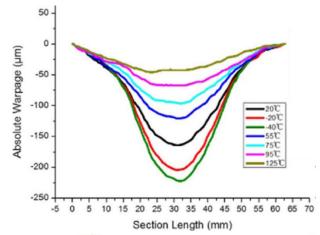
INTEGRATION ROADMAP

Optimization Opportunities for heterogeneous integrated packages

Constrained by overall footprint and height of the package module

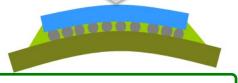


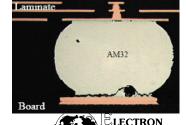
Warpage Engineering, Chip-Package-Interaction (CPI)


Warpage Engineering

Assembly stress due to warpage is the largest contributor to failures in packaging. Some of the variables leading to the warpage include substrate materials, copper distribution (wiring density), number of layers, underfill material, die thickness, processing temperatures, humidity...

Reducing warpage and stress will contribute to higher yields and better reliability. As interconnect pitches go down, the warpage window for packages will be reduced

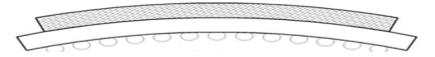

Step1: Silicon attach to substrate at Solder Reflow Temperature ~230°C


Step2: Cool down to room temperature

Step3: Heat back to underfill temperature $(150 \sim 200^{\circ}\text{C})$

Step4: Cool down again

WARPAGE REDUCTION ROADMAP

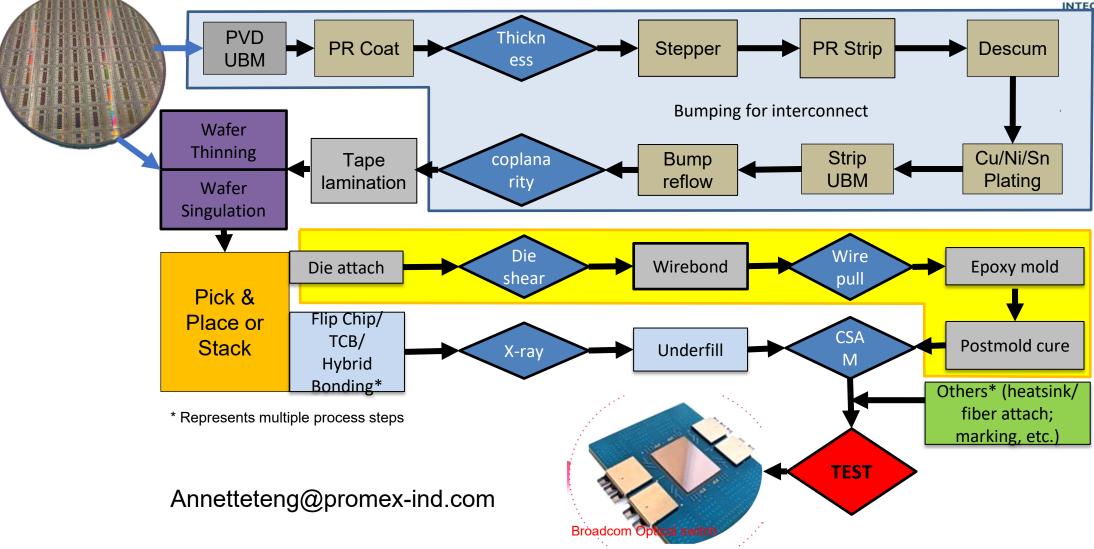

Table 2: Warpage Allowance across two market segments

	Year of Production	2018	2019	2020	2023	2026	2029	2030
	Pitch (mm)							
	4.0	-0.13, +0.21	-0.11, +0.18	-0.11, +0.18	-0.11, +0.18	-0.10, +0.16	-0.08,+0.16	-0.08,+0.17
	1.0	-0.13, +0.20	-0.11, +0.18	-0.11, +0.18	-0.11, +0.18	-0.10, +0.15	-0.08,+0.15	-0.08,+0.16
	0.8	-0.13, +0.21	-0.11, +0.18	-0.11, +0.18	-0.11, +0.18	-0.10, +0.16	-0.08,+0.16	-0.08,+0.17
ပ္	0.8	-0.10, +0.10	-0.09, +0.09	-0.09, +0.09	-0.09, +0.09	-0.08, +0.08	-0.07, +0.07	-0.07, +0.07
FPC	0.65	-0.10, +0.10	-0.09, +0.09	-0.09, +0.09	-0.09, +0.09	-0.08, +0.08	-0.07, +0.07	-0.07, +0.07
	0.00	-0.09, +0.09	-0.08, +0.08	-0.08, +0.08	-0.08, +0.08	-0.07, +0.07	-0.065, +0.065	-0.065, +0.065
	0.5	-0.09, +0.09	-0.08, +0.08	-0.08, +0.08	-0.08, +0.08	-0.07, +0.07	-0.065, +0.065	-0.065, +0.065
	0.5	-0.08, +0.08	-0.07, +0.07	-0.07, +0.07	-0.07, +0.07	-0.065, +0.065	-0.06, +0.06	-0.06, +0.06
	0.4	-0.08, +0.08	-0.07, +0.07	-0.07, +0.07	-0.07, +0.07	-0.065, +0.065	-0.06, +0.06	-0.06, +0.06
	0.4	-0.07, +0.07	-0.065, +0.065	-0.065, +0.065	-0.065, +0.065	-0.06, +0.06	-0.055, +0.055	-0.055, +0.055
	0.3	-0.07, +0.07	-0.065, +0.065	-0.065, +0.065	-0.065, +0.065	-0.06, +0.06	-0.055, +0.055	-0.055, +0.055
<u>o</u>	0.3	-0.06, +0.06	-0.055, +0.055	-0.055, +0.055	-0.055, +0.055	-0.05, +0.05	-0.045,+0.045	-0.045,+0.045
<u> </u>	0.25		-0.055, +0.055	-0.055, +0.055	-0.055, +0.055	-0.05, +0.05	-0.045,+0.045	-0.045,+0.045
Mobile	0.23			-0.055, +0.055	-0.055, +0.055	-0.05, +0.05	-0.045,+0.045	-0.045,+0.045
_	0.2			-0.055, +0.055	-0.055, +0.055	-0.05, +0.05	-0.045,+0.045	-0.045,+0.045
	0.2				-0.045,+0.045	-0.045,+0.045	-0.045,+0.045	-0.045,+0.045
	0.15				-0.045,+0.045	-0.045,+0.045	-0.045,+0.045	-0.045,+0.045
	0.15				-0.025,+0.025	-0.025,+0.025	-0.025,+0.025	-0.025,+0.025
	0.4				-0.025,+0.025	-0.025,+0.025	-0.025,+0.025	-0.025,+0.025
	0.1					-0.020,+0.020	-0.020,+0.020	-0.020,+0.020

Manufacturable solutions exist, and are being optimized Manufacturable solutions are known

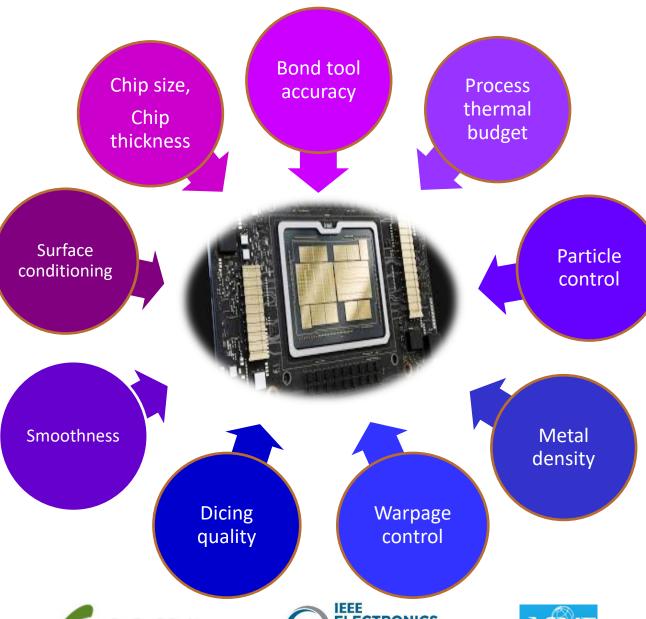
Interim solutions are known

Manufacturable solutions are NOT known



HI Single and Multi Chip Manufacturing

HI ASSEMBLY KEY CHALLENGES


1μm pitch

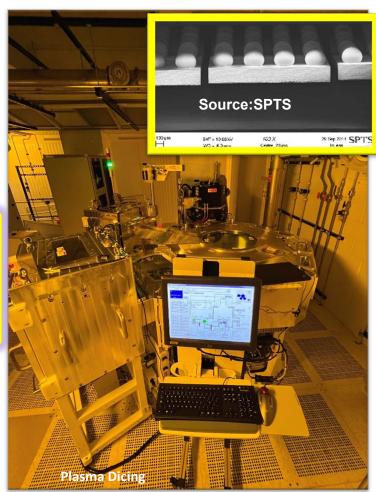
Source: Leti

When pushing the limit,

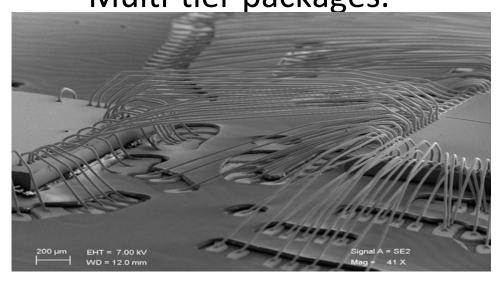
there's no room for error

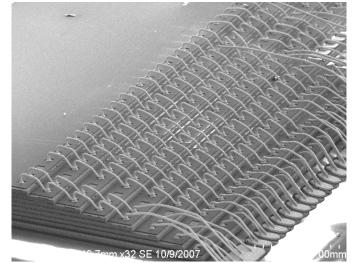
Annetteteng@promex-ind.com

S. W. Liang, Gene C. Y. Wu, K. C. Yee, C. T. Wang, Ji James Cui, and Douglas C. H. Yu "High Performance and Energy Efficient Computing with Advanced SolCTM Scaling" 2022 ECTC, Taiwan Semiconductor Manufacturing Company



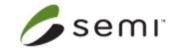
WAFER SINGULATION




Increased Interconnect Density

The finest inline pitch of wire bonding has remained around 35um. However, wire bonding interconnect density continuously increases through higher level of system integration such as SiP, stack die and Multi-tier packages.

30kV 20.4mm x35.8E(L) 1,00mm

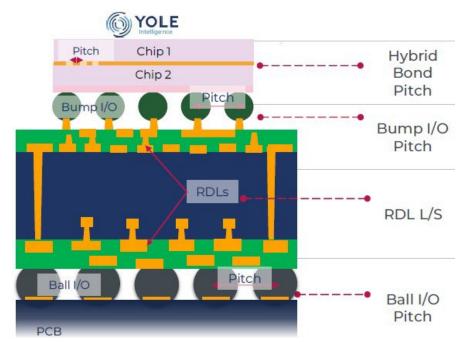

SiP with Die to Die Wire Bond Interconnect

High Density Multi-tier Package

Stacked Memory Device

Flip Chip Interconnect Pitch Roadmap –HIR 2023

Table HI-4 Chip-to-package Substrate Technology Requ	uirements	(Update	d Nov 202	3)						
Year of Production	2018	2019	2020	2021	2022	2023	2025	2028	2031	2034
Flip Chip Pitch										
Flip Chip- Large Body Solder >12mm Sq Die	135	130	130	130	130	130	130	130	130	130
Flip Chip- Small Body Solder <12mm Sq Die	135	130	130	130	130	130	130	130	130	130
Flip Chip - Cu Pillar Small Body <12mm Sq Die	40/80	30/60	30/60	30/60	30/60		15/30	15/30	15/30	15/30
(Periphery Staggered, Inline Same as large Body Cu	40/00	30/00	30/00	30/00	30/00	20/40	15/50	13/30	15/50	15/50
Flip Chip- Cu Pillar Large Body >12mm Sq Die	120	110	110	110	110	105	100	90	90	80
Flip Chip Solder - COW	50	50	50	50	50	50	50	50	50	50
Flip Chip Cu Pillar -COW (Chiplets on Si)	40	40	40	35	30	30	22	16	13	10
Flip Chip Cu Pillar -COW (Chiplets on RDL)	50	50	45	45	45	45	40	40	30	30
Wafer to Wafer Cu to Cu Interconnect	5	5	5	2	2	2	2	1	1	1
Die to Wafer Cu to Cu Interconnect (Hybrid)	30	20	20	9	9	9	6	6	3	3
Embedded Die In Substrate Interconnect Pitch	120	120	120	120	90	70	60	50	50	50
Manufacturable solutions exist, and are being op	timized									
Manufacturable solutions are	known									
Interim solutions are	known	•								
Manufacturable solutions are NOT	known									



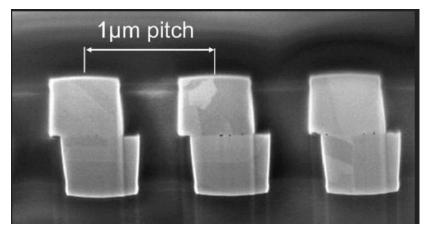
Hybrid Bonding Enabling Next

Generation of Chiplets

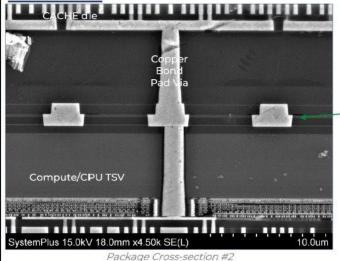
129

2024

2025

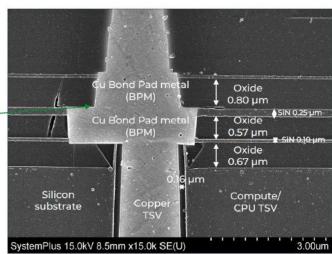

2026

Millions of Chiplet Packages


2023 Data Source: Techsearch International

2022

Wafer to Wafer Bonding GRATION ROADMAP

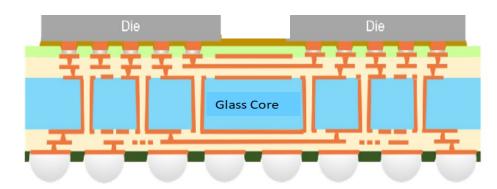

Source: Power Pulse

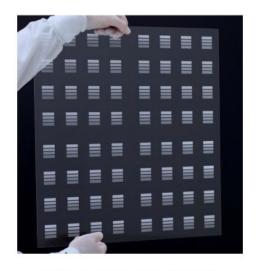
Die To Wafer **Bonding** Hybrid Bond

Interface

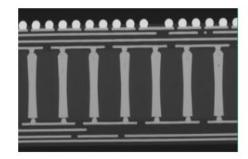
9um Pitch

Source: Yole Development

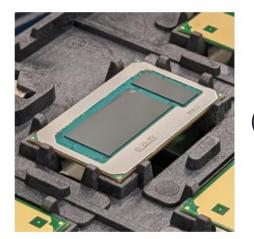


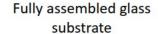


Glass Core Substrate



(Source: Intel)


Glass Panel with Through Glass Vias (TGV)


X-section of a substrate test vehicle with 3 RDLs and 75um TGVs for client products

Glass core substrates enable significant improvement to both electrical and mechanical properties

- ➤ Tunable Modulus and CTE closer to silicon → Large form factor enabling
- ➤ Dimensional stability → Improved feature scaling
- ➤ Low Loss → High speed signaling
- ➤ High (~10x) through-hole density → Improved routing and signaling
- ➤ Higher Temperature Capability → Advanced integrated power delivery

(Source: Intel)

Additively Manufactured Electronics (AME)

HETEROGENEOUS INTEGRATION ROADMAP

AME = Printed Conductor + (Printed/Existing) Dielectric + (optional) Additional Processes and with permissions from IDTechEx

Printing Methods for Electronics: Resolution vs Throughput

Direct-write & Conformal**

Dispensing & Extrusion Print

Non-contact Jetting Methods

Inkjet Print
Aerosol Print
Electrohydrodynamic Print
Piezo-Valve Jetting
Laser Induced Forward Transfer (LIFT)

** can deposition on 2D or 3D substrate

3D Print Methods

Fused Deposition Modeling SLA (Stereolithography) 2-photon SLA Digital Light Processing (DLP) Powder Bed Fusion

Contact 2D Print Methods*

Screen/Stencil Print Gravure Print Flexographic Print

* 2D only substrate

Additively Manufactured Electronics (AME)

Structural Electronics

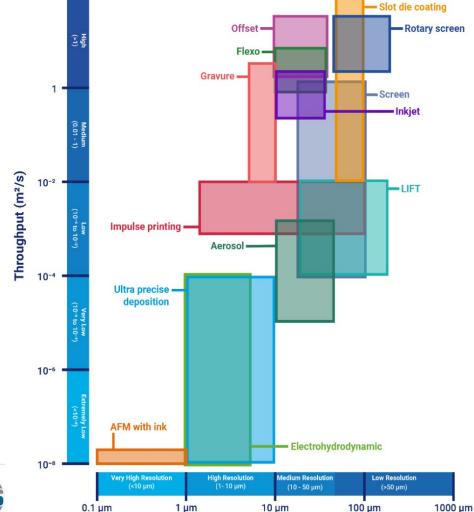
AME Deposition

Dot Deposition
Line Deposition

Area Deposition

Pick & Place Laser Direct Structuring (LDS) Electroplating

In-Mold Electronics

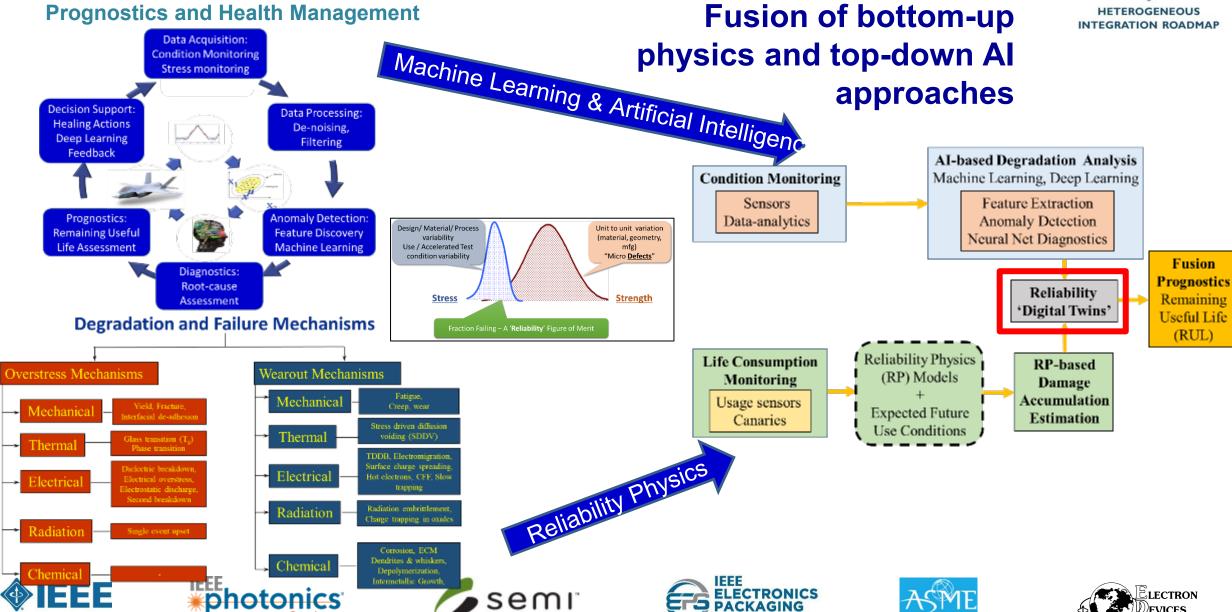

Pick & Place Thermoforming

Flexible Hybrid Electronics (FHE)

Pick & Place Solder
Deposition
Lithographically Defined
Features
Over-molding

Additional Supporting Processes

Pick & Place (Si, passives, etc.)
Curing/Sintering
3D Scanning
Metrology
Subtractive (Laser, Milling)



HI System reliability

Modes/Mechanisms/Models for degradation & failure

Multiphysics		Multiscale Integration	Multi Physics	Elect	rical Stress	SI/PI (Electrical Performance)	Thermal Analysis	Mod	isture	Thermal Mechan	ical Stress	Med	anical Stress	Thermal Interaction with SI/PI	Stress Interaction with SI/PI	Simulatio	on/Modelling and Co-C	sign Flows	Manufacturing Variability	Material Property and Variability
		integration		Failure Modes	Failure Mechanism and Reliability Models			Failure Modes	Failure Mechanism and Reliability Models	Failure Modes	Failure Mechanism and Reliability Models	Failure Modes	Failure Mechanism and Reliability Models			Failure Modes	EDA Flows	PDK/ADK		
Devices <u>a</u>	Transistor	FinFET and GAA	Leakage current, ripple currents, unstabel performance and ESD	N/PBTI models with recovery; HCI model; TDDB Weibull model; Oxide & junction breakdown model	Transistor SPICE	FinFET SHE	No known failures	None	FinFET SHE channel stress; µBump/C4 bump/TSV; system level stresses	FinFET SHE Models; CPI Model; Piezo-electrical models	No known failures	None	SHE effect on SPICE parameters	Influence of Si stress on SPICE paramters	Effects of degradation mechanisms and process variabilities on electrical functionality	Cadence; Relxpert; Mentor Graphics	Integrate of degradation models into Device SPICE Model			
			MEOL/BEOL Metal/Via /ELK	Electromigration; Inter Layer Dielectric ELK Breakdown; MEOL Oxide Breakdown; EOS	Electromigration model; Dielectric breakdown model	Extraction of RLC Model	Joule Heating simulation; SHE effects on MEOL/BEOL	Pad and underline metal corrosion; Cu/ELK delamination 3. Cu loss/diffusion	Electrochemical corrosion; interface degradation due to moisture absorption; Barrier metal oxidation	SHE failure in Cu/ELK, MEOL, BEOL, µBurnp, TSV; RDL failures from package stress, Cu fatigue; LowK/ELK layer cracking & delamination	Creep induced voiding; CTE mismatch; SHE induced localized thermal cycling	LowK/ELK layer cracking & delamination	Fatige by bending	Joule/SHE temp effects on RLC	Effect of Cu/ELK stress on RLC	CPI induced Cu/ELK cracking: IHE/SHE stresses; stress from bumps/TSV/RDL & Packaging	Ansys Mentor			
			FBEOL RDL/Dielectric	RDL/UBM Electromigration	Electromigration	Extraction of RDL RLC Model	BEOL Joule/SHE effect on RDL temperature	Cu dedrite	Electro-chemical corrosion	RDL cracking	μbump/TSV/ Package/ Board effects on RDL stress			Effect of RDL temp on electrical model	Effect of RDL stress on electrical model	CPI/CBPI induced failures: RDL cracking & delamination	Effect of temp and stress on RDL EM			
Š			Au/Cu Wirebonding	Electromigration				IMC Corrosion		Bond wire fatigue		Cu/ELX cracking	Bonding force models							
Multiscal	Interconnects	Interconnects	μΒυπρ/C4 Βυπρ/UBM	Electromigration induced voids	Black's model; Mutiphysics EM model including eletron, thermal gradient, stress gradient and atomic diffusion	µbump electrical model	Die Internal Joule/SHE temp effect & external temp effect on bump temperature	UBM delamination	Galvanic effect (electro-chemical reaction)	Bump joint cracking; Under Bump ELK cracking; Under pad cracking in substate	CTE mismatch induced stress; Fatigue	Tensile stress causes bump peel; cracks at ubump; UBM and interface	Fracture/fatigue from shock, drop, impact, Vibr; e.g. in die attach, dielectric layer, inter-poser, UBM, solder joints	Effect of temp on bump electrical model	Effect of bump stress on electrical model	Multi Physics Bump EM - local current, temp, temp gradient and stress effect on µbump EM	Bump fatigue: effect of local temp & stress on fatigue life	Package material		
			TSV/Interposer/ EMIB	Electromigration; Barrier Dielectric breakdown	Black's model; Mutiphysics EM model including electron, thermal gradient, stress gradient and atomic diffusion	TSV electrical model	Internal Joule/SHE temp effect on the TSV temp; External temp effect on TSV temp.			Cu pumping/TSV pop up	Cu extraion due to CTE mismatch with St; plastic rachetting at high temp			Effect of TSV temp on electrical model	Effect of TSV stress on electrical model	TSV EM response to local current, temp field and stress; TSV Pop out and effects on TSV/Si delamination	Barrier breakdown - How does voltage/current, temp and stress affect TSV barrier BD?	thermal/mechanical properties; Die metal stack and thermal/mech properties; µBump/CA bump/TSV thermal mechanical		
			Passivation	Passivation cracking	EOS induced cracking			Passivation cracking & delamination; underfil/Mold compound delamination		Passivation cracking	CPI stress in SIN							fracture criteria; Void initiation and propagation criteria; interconnect fatigue/creep model;		
			Underfill					Underfill to die/substrate delamination; underfill swelling	Moisture degradation in underfill & at interfaces	Bump joint cracking	Solder joint fracture and fatigue due to underfill expansion							Package Interface fracture criteria; Moisture diffusion and vapor pressure		
	Packaging/		High Density Substrate	Metal trace electromigration		Package Substrate RLC model extraction	Co-thermal sim from die to package	Metal trace		Metal trace/via cracking				Thermal - electrical perfromance interactions	Mechanical- electrical performance interactions	Cu trace EM - effect of local current, temp and stress	Thermal & mechanical effect on Cu trace/via cracking	model; IMC thermal/mech/electric al properties; Photonics optical properties		
	r ackaging/	Packaging /System	Wafer Level Package							Warpage										
	System		Eanout Package 2.x/2.5D Interposer Package (CoWoS and EMIB, etc)							Warpage Warpage; Embedded die delamination from substrate & sidewall; pvia & pbump cracking & delamination; Solder/TIM delamination								_		
			3D Package (Foveros, etc)			Mold compound pop corn; Anisotropic conductive adhesive cracks		Mold compound pop-coming		FinFET ion shift (due to TSV/SI CTE mismatch, µBump stress, shrinkage of underfill & EMC); TSV effects on BTU/HC; BEOL cracking Cu pillar joint fellum; Mold compound pop- corn; conductive adhesive cracking										
			Chiplet/KGD	ESD						Die edge cracking: Under bump ELK cracking										
N	/lodule/System	Module/ System	Printed Circuit Board Assembly	Leakage current and shorts from Conductive filament formation	electro-chemical metal migration	PCB Board electrical model	\Co-thermal sim from die to package to system	leakage current and shorts from loss of surface insulation resistance & conductive filament	moisture ingress, leading to fiber- matrix debonding, and electro-chemical metal migration	Solder joint cracking; Cracking of PTH plating; PCB delamination; trace cracking; Warpage	thermomechanical fatigue of trace and solder, IMC fracture; CTE mismatches between: component / PWS. metallization/	Solder joint cracking: pad cratering	Stress exceeds the material and interface strength	Effects of PCB temp and corrosion on electrical model?	Effects of PCB stress on electrical model?	Board level Solder Joint Reliability	ANSYS Mechanical	PCB thermal/ mechanical properties; Solder joint fatigue/creep model; Solder joint dyannic/ properties		

Thank You

