

Heterogeneous Integration Roadmap

Chapter 5: Automotive


TWG Chairs: Vikas Gupta (ASE), Veer Dhandapani, (NXP)

Contributors to Automotive TWG

Rich Rice Shalabh Tandon Sven Rzepka Simon Stefan Franz Abhijit Dasgupta Veer Dhandapani Przemyslaw Jakub Gromala Rene Rongen Thorsten Meyer Wolfgang Froehlich Venkat Sundaram Marco Munzel Hongbin Yu Klaus Pressel Vikas Gupta Sandeep B Sane Johannes Duerr Rao Tummala Andreas Grassman Heinz Wagensonner

Chapter 5 Key Sections

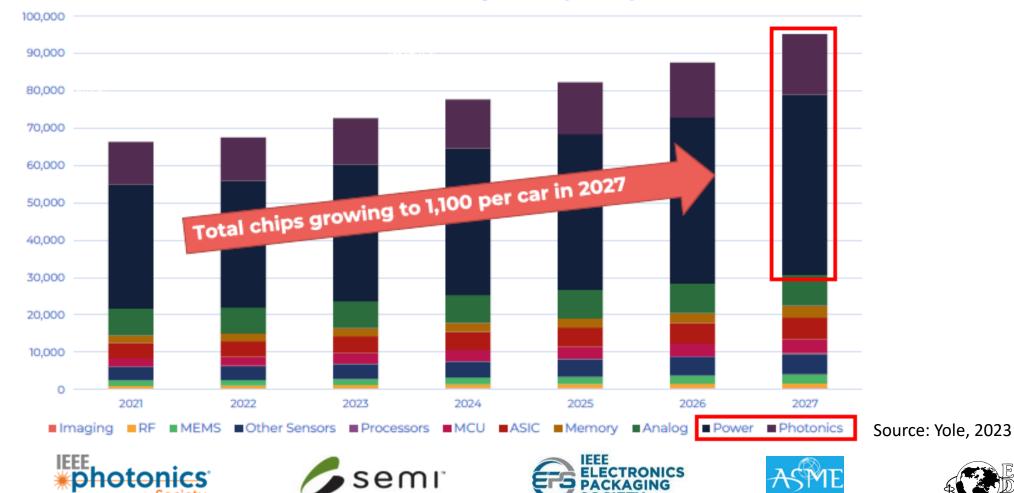
- Section 4: Autonomous, ADAS and Sensing Needs
- Section 5: Data Processing for Autonomous, ADAS, Infotainment and Connectivity
- Section 6: Vehicle Electrification
- Section 7: Reliability

https://eps.ieee.org/images/files/HIR_2021/ch05_automotive.pdf

Focus Areas for Next Revision

- Automotive Processors
- Sensors Lidar, Imaging Radars
- Powertrain Inverter, Battery Management System, On Board Charger

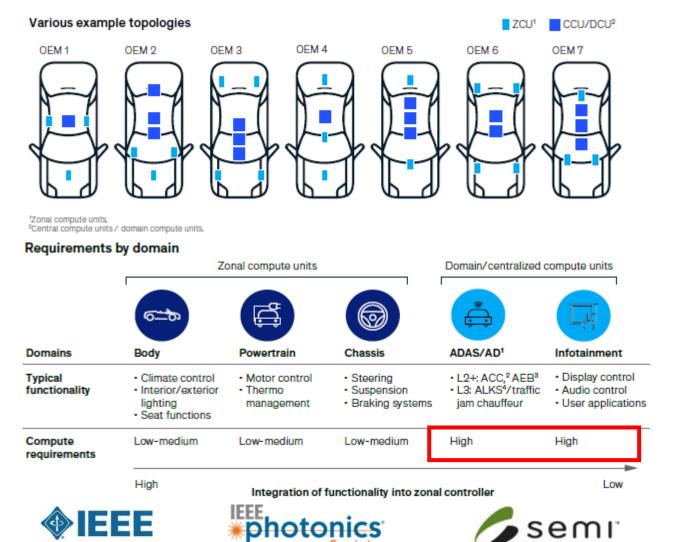
Semiconductors in Automotive

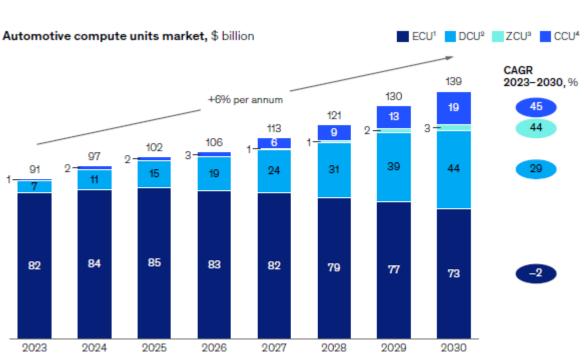


ECTRON

OCIETY

In 2027, over 95 billion chips will be integrated in cars.


Power & Photonics dominate, Memory & Processors highest growth rate



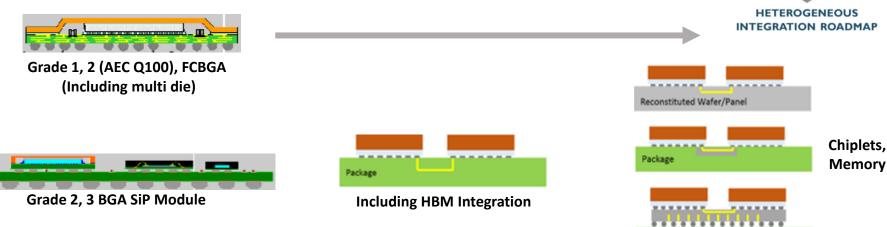
Automotive Breakdown by Device (Munits)

Next Gen E/E Architecture and Compute

ECTRONICS

OCIET

GING


Source: McKinsey, 2023

LECTRON

ICES

Automotive Processor Roadmap

Package

Advanced Si Node Acceleration, Processor Power, Increased Graphics and Memory BW

Attribute	Current	3-5 year	5+ year
Si Node	7nm (HVM), 5/4nm (Dev.)	5/4nm (HVM), 3nm (Dev.)	3/2nm (HVM), TBD
Bump Pitch	130/110um	<100um, micro-bump	<100um, micro-bump
Integration Level	РСВ	Package	Die
Reliability	AEC Q100 Grade 3	/2/1; AEC Q104 (SiP)	TBD
Safety	ASIL-B	ASIL-D?	
IEEE #pho	semı"	ELECTRONICS PACKAGING SOCIETY	ASME ELECTR DEVICE Societ

Opportunities for Cross TWG Collaboration

Autonomous, ADAS and Sensing Needs

- Processors Auto vs. HPC requirements (HPC & Data Center TWG)
 - Chiplets
- Sensing (*MEMS & Sensors Integration*)
 - Lidar
 - Imaging Radar

Vehicle Electrification (Power Electronics TWG)

- Inverter
- On Board Chargers
- DC-DC Converters, Battery Management Systems

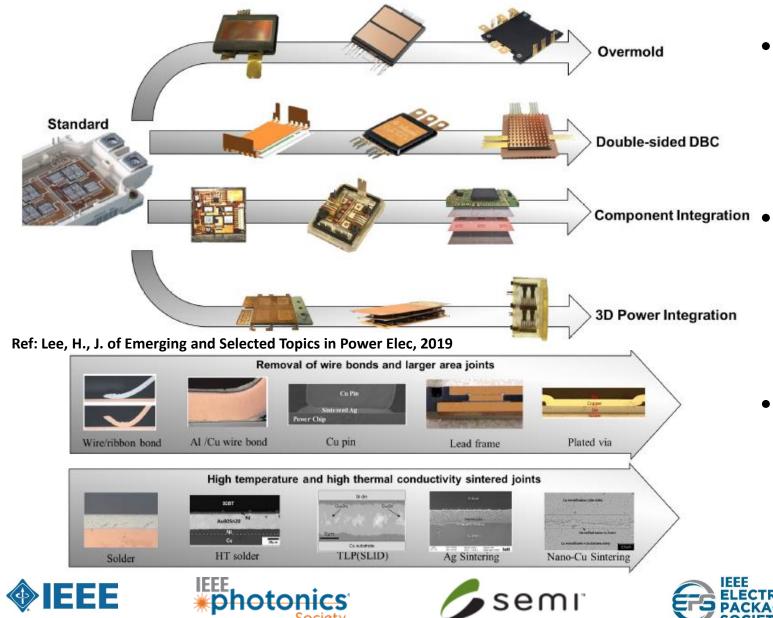
Reliability (*Reliability TWG*)

Reliability requirements and qualification strategies for evolving use conditions

Electrification – Powertrain

Integration and Miniaturization to improve overall efficiency

Source: Yole, 2023



Electrification and Packaging

- Key Drivers
 - Lower cost \$/kW
 - Higher Power Density kW/kg
 - Smaller Size kW/L
- **Enhanced modularity coupled** with low inductance, low loss, improved thermal performance through advancement in package designs
- Advances in package interconnections, die-attach and substrate technologies playing a key role in package innovation and performance

Opportunities for Cross TWG Collaboration

Autonomous, ADAS and Sensing Needs

- Processors Auto vs. HPC requirements (HPC & Data Center TWG)
- Sensing (*MEMS & Sensors Integration*)
 - Lidar
 - Imaging Radar

Vehicle Electrification (*Power Electronics, SiP TWG*)

- Inverter
- On Board Chargers
- DC-DC Converters, Battery Management Systems

Reliability (*Reliability TWG*)

• Reliability requirements and qualification strategies for evolving use conditions

Opportunities for Cross TWG Collaboration

Autonomous, ADAS and Sensing Needs

- Processors Auto vs. HPC requirements (HPC & Data Center TWG)
 - Chiplets
- Sensing (*MEMS & Sensors Integration*)
 - Lidar
 - Imaging Radar

Vehicle Electrification (*Power Electronics, SiP TWG*)

- Inverter
- On Board Chargers
- DC-DC Converters, Battery Management Systems **Reliability** (*Reliability TWG*)
- Reliability requirements and qualification strategies for evolving use conditions

Automotive Technical Working Group

Many Thanks for your Attention and Support

