

Heterogeneous Integration Roadmap Workshop

Heterogeneous Integration Roadmap **Thermal Technical Working Group (TWG)**

Presented by Yin Hang (Meta) Madhu Iyengar (Google) Azmat Malik (AccuVentures) Weihua Tang (Google)

On behalf of the Thermal TWG February 2024

IEEE HIR Thermal Chapter

Thermal TWG will consider three areas:

- (a) Die level.
- (b) Package integration/SIP/module Level.
- (c) System Level (limited to board level).

Thermal TWG will focus on articulating the following in quantitative and qualitative terms:

- (i) Canonical problems with thermal challenges;
- (ii) Cooling limits for known solutions;
- (iii) Advanced concepts and research.

Years 1-4 (2019-2022)

- Thermal effort kicked off in 2018.
- ~50 industry & university experts
- 2019-2022 chapters published
- Past focus
 - Canonical industry problems
 - Research advances
 - Emerging challenges and cooling technologies

2023 Update

Silicon micro-channels mfg

Plan for 2024 Update

- Two confirmed collaboration: Additive
 Manufacturing, Modeling & simulation
- A few more to explore

1. 2D chip with stacked memory on a silicon/glass interposer

2. 3D stacked die with conduction interfaces

4. Optics/photonics based Heterogeneous package

Canonical Thermal Heterogeneous Integration Problems

3. 3D stacked die with embedded liquid cooling

Figure 11: Notional 3D chip architecture and anticipated topology challenges

5. Harsh environment (military, aerospace, automobile)

Figure 14: Temperature contour data for the external surface of a SmartPhone [10]

6. Mobile application chipset (package on package, fan out, bridge)

7. Voltage Regulators in a Heterogenous Package

Advanced Thermal Technologies & Research

Figure 17 (a) Two common strategies can be employed to create high-performance TIM composites [14], (b) an example of graphene-polymer composite [15], (c) vertically grown nanotubes [16-17], (d) vertically electrodeposited nanowires [14, 18]

[A] Thermal Interface Materials

[C] Embedded liquid cooling of chip and chip stacks

[B] System thermal limits for HPC multi-chip modules

A 3D chip stack using advanced materials in the conduction heat flow path.

[D] Advanced Thermal Materials for Thermal Management

[E] Thermomechanical Modeling for Heterogeneous Integration

Silicon Microchannel Manufacturing Process Study

SEMI Strategic Innovation Platform Project Semiconductor Manufacturing Assessment of Silicon Microchannels on the Back Side of High-Performance ASICs

The Si Microchannels study was convened by SEMI to identify materials, processes, and technologies that improve thermal management, performance, and yields for high performance computing (HPC) processors. A crucial part of this study is identifying stakeholders in implementing Si microchannels in high-performance devices, the process and equipment changes required, and any potential blocking elements or "deal-breakers" to adopt on.

The study also sought to understand why silicon microchannels have not yet been implemented in production – is it technology, economics, or both?

Finally, as the silicon manufacturing supply chain will need to work together on models/simulations that take materials and manufacturing processes into account and estimate the economic impacts of scaling to volume manufacturing,

Wafer-level approaches: two Design Options

SOC and HBM with different height

SOC and HBM with same height

Key Issues and Next Steps

Potential Concerns:

- Scalable to future IT roadmap (increasing substrate size and package stress)
- Test, Yield, Assembly
- Pressure drop across the manifold
- System integration

Next Steps:

- Prioritize the development of microchannel-based chip cooling approaches as part of the CHIPS program.
- Move forward with a Si Microchannels Phase II program with the goal of creating test vehicle(s).

Need a collaborative approach with the data center industry community to address SOC package, coolant compatibility, cooling solution distribution, and total cost of ownership

Thermal TWG 2024 Planned Activities

Confirmed HIR Collaboration b/w Thermal TWGs and

- Additive Manufacturing for Electronics on Cooling Enhancement (Eric Dede)
- Modeling and simulation on warpage and 3D package (Christopher Bailey and Xuejun Fan)

More Collaboration in Consideration

- Thermal/mechanical technical committee (EPS) (Sreekant Narumanchi)
- Other roadmaps, such as MAPT (Tim Chainer)
- Dielectric fluids in Embedded application, e.g. electric vehicles (Sreekant Narumanchi)
- Thermal challenge and solutions for test (Ken Butler, Jeorge Hurtarte)

Please reach out to us if your group have specific needs on the thermal investigation.

HIR Thermal TWG Contributors

Madhusudan Iyengar	Andy Mackie	Avi Bar-Cohen	Ali Merrikh
Amr S. Helmy	Azmat Malik	Bahgat G. Sammakia	Baratunde Cola
Baris Dogruoz	Benson Chan	Bharath Ramakrishnan	Bob Corner
Bill Bottoms	Callum Middleton	Carl Zweben	Cheng Chen
Chris Malone	Cleverson Souza Chave	Craig Green	Damena Agonafer
Dereje Agonafer	Devdatta Kulkarni	Dhruv Singh	Don Draper
Eduardo De Los Heros	Eric Dede	Erik Yen	Gamal Refai-Ahmed
Herman Oprins	Husam Alissa	Jamal Yagoobi	Jason Strader
Jaechoon Kim	Justin A. Weibel	Kamal Sikka	Kanad Ghose
Kenneth Goodson	Kevin P. Drummond	Kuo-Huey Chen	Leila Choobineh
Li Shi	Luu Nguyen	Man Prakash Gupta	Mark Hempstead
Mehdi Asheghi	Michael Barako	Michael J. Ellsworth	Norman Chang
Peter de Bock	Ravi Mahajan	Raymond Fillion	Rockwell Hsu
Satish Kumar	Sreekant.Narumanchi	Sivasankar	Sougata Hazra
Srikanth Rangarajan	Suresh V. Garimella	Taehwan Kim	Tahir Cader
Timothy Chainer	Vadim Gektin	Venkatesh Avula	Victor Chiriac
Weihua Tang	Wei Wang	William Chen	Yin Hang
Yoonjin Won	Yogi Joshi	Yunhyeok Im	

We are thankful and appreciative of the collaboration across the community over the last 5 years and look forward to more.