MEMS and Sensor Integration TWG

Mary Ann Maher, PhD., Co-Chair

- Mary Ann currently serves as CEO of SoftMEMS
- She received her PhD from Caltech in 1989.
- She has over 30 years of experience in the area of electronic design automation (EDA) for MEMS, sensors, and analog circuits

Shafi Saiyed, PhD., Co-Chair

- Shafi leads package development team at Analog Devices
- Shafi received his PhD in Systems Science from SUNY Binghamton in 2005.

Sensors interact with the outside world

- Real (analog) world requires different sensing modes
- Each sensing mode has different set of requirements and manufacturing approaches
- Working principle (physics) drives packaging
- No Moore's law or lithographybased roadmap

Integration Upward on Signal Chain

• Across any application domain, the basic signal chain from real world-to-cloud remains common

- Challenge: How to Integrate components that require different fabrication processes, materials, designs
 - with other sensors, ASICs, passives, antenna, power sources, etc, in the same advanced integrated packages
- **Challenge:** How to integrate diverse components up the signal chain (keeping sensor performance and signal integrity)?

End Applications Drive Different Integration Path

- Diverging path to integrate Inertial MEMS sensors with <u>other</u> <u>components of the signal chain</u>
- Application drives packaging

Inertial MEMS Landscape

Courtesy Bosch, keynote 2022 iMAPS

MEMS Development Flow

Courtesy Bosch, keynote 2022 iMAPS

Applications & Packaging

	Current State-of-Art		5, 10 years & beyond	
	Application Areas	Packaging	Emerging Application Areas	Packaging
Mobile / Consumer	TiltNavigationGaming	Traditional low density LGAThick sensors	TiltNavigationGaming	 Size reduction, WLP Thin sensors Integration with µProcessor EMI shielding
Medical & Health	Not pervasive	Traditional plastic on rigid organic substrates	 Implantable Concussion monitoring Vital Signs monitoring Telemetry 	 Flexible substrates Thin profiles, WLP Biocompatibility
Automotive	 Air bag crash sensors Rollover Stability control 	 Traditional large body SOIC / QFN 	 Navigation grade IMUs ADAS Acoustic noise cancellation Adaptive headlights Vision correction Condition monitoring 	 SiP based modules Substrate technology Integration of μProcessor for intelligent processing Integration of RF for communication
Aerospace & Defense	Not pervasive	 FOG and/or RLG Traditional ceramic substrate based modules 	 Machine Health Attitude & Heading Navigation Stability 	 SiP based modules Substrate technology Integration of μProcessor for intelligent processing Integration of RF for communication
IEEE	*photoni			

Important Collaborations with other chapters

- MEMS interacts with almost all other chapters
- Discuss requirements and remove overlaps with:
 - Automotive, IoT, Medical Health and Wearables
 - To be done in future: Mobile, Aerospace and Defense, Reliability,
- Key linkages for this year:
 - Review: Simulation and modeling, co-design, thermal and materials
 - New: security, reliability and test, onshoring

(with permission of CEA, LETI)

Current Status of Chapter

• What you will find:

- MEMS specific integration requirements
- MEMS specific integration methods- overview
- MEMS Application specific requirements and roadmaps for integration for
 - Automotive, Health/Wearables, Consumer
 - Materials
 - MEMS specific CAD
- What we need to do :
 - Address reviewer's comments on references etc
 - Make 5, 10, 15 year predictions more explicit

2024 and beyond, TWG continuing to work on ...

Additional Foundational Technologies to be considered

- AI + MEMS- TInyML
- MEMS on Flexible substrates
- Important topic areas:
 - Manufacturing and supply chain issues for regional manufacturing
 - Chips Act impact
- Expand applications areas:
 - Integration of chemical/environmental sensors
 - MEMS + Photonics

American Semi

MEMS and Sensor Integration TWG

• Team Members

- Mary Ann Maher, PhD (SoftMEMS), Co-Chair
- Shafi Saiyed, PhD (Analog Devices), Co-Chair
- Jean-Charles Souriau (CEA LETI)
- Benson Chan (IEEC, Binghamton University)
- Philippe Robert (CEA LETI)
- Andrew Fung, PhD (AM Fitzgerald)
- William Chen, PhD (ASE and HIR Chair)
- Looking for industry volunteers to helps us with gas sensing, optical sensing
- Looking for academics to join us.....

