Advanced Packaging in the Era of HPC and AI

Vincent (Woopoung) Kim, Ph.D.
EVP, Advanced Package (AVP) Business
Samsung Electronics

2024 Heterogeneous Integration Roadmap (HIR)
Semiconductors in the Era of AI

- AI drives explosive growth in data processing and computing power

![Graph showing growth in computing power and data storage from 2005 to 2025. Source: IDC, Seagate, DataAge, Cisco, IHS, Gartner, Statista]

![Graph comparing computing power of Chat GPT 1 vs Chat GPT 4. Source: Sevilla et al., 2023, Our World in Data]
The human brain far exceeds the current level of logic and memory semiconductors.

Logic/Memory semiconductor innovation is needed for AI growth.

Semiconductors vs. the Human Brain

- Memory:
 - HBM
 - 460 GB/s

- Storage:
 - 25 TB/s

- Performance:
 - 1 PFLOPS/W

- Logic:
 - 7nm NPU
 - 0.00333 PFOPLS/W

2024 Heterogeneous Integration Roadmap (HIR)
Logic Performance Innovation: Rise of HI

- Overcoming Cost/Performance challenges with ‘Beyond Moore’ Adv. PKG solutions

Cost Challenge
Manufacturing costs continue to increase in advanced process technology era

- Cost per Yielded mm² for a 250 mm² Die
 - 45nm: 1.0
 - 32nm: 2.0
 - 28nm: 3.0
 - 20nm: 4.0
 - 14/16nm: 5.0
 - 7nm: 6.0

- Die Size Increasing over Time
 - Reticle Limit

Beyond Moore Solution
High yielding smaller chips and optimal process selection

- Node N
- N / N / N-1 Specialty

Performance Challenge
Moore’s law slowdown due to technological difficulties

- Processor Frequency Increasing over Time
 - (Source: Intel CPU Trend, Wikipedia)

- 2024 Heterogeneous Integration Roadmap (HIR)
 - ~100um pitch
 - ~um pitch
Memory Bandwidth Innovation: Rise of Adv. PKG

- Overcoming the Logic-Memory bandwidth gap through Adv. PKG integration

Memory BW Challenge

Memory Bandwidth acts as system performance bottleneck

Logic-Memory BW Improvement

Heterogeneous Integration w/ Advanced Package

Performance Growth Compute vs. DDR Bandwidth

<table>
<thead>
<tr>
<th>Signal Path</th>
<th>~ 10cm</th>
<th>~ cm</th>
<th>~ mm</th>
<th>~ um</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O #</td>
<td>8</td>
<td>64</td>
<td>1,024</td>
<td>>>1,024</td>
</tr>
<tr>
<td>B/W</td>
<td>~5.6GB/s</td>
<td>~76.8GB/s</td>
<td>~1TB/s</td>
<td>>>2.5TB/s</td>
</tr>
</tbody>
</table>

2024 Heterogeneous Integration Roadmap (HIR)
Contents

Introduction

Samsung AVP Platform Solutions

HPC / AI
- HBM
- 3D Logic Stacking
- I-Cube

Mobile AI
- Mobile AP
- Low Power Wide I/O Memory

Heterogeneous Integration Eco System

2024 Heterogeneous Integration Roadmap (HIR)
HBM Roadmap

- Increased needs for HPC/AI applications call for high-stack, high-performance HBM
 1) HBM3 12H world first mass production (’23.7~)
 2) HBM4 16H HCB technology in development
 3) HBM4 customized HBM in development

<table>
<thead>
<tr>
<th></th>
<th>2023</th>
<th>2024</th>
<th>2025~</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBM Product</td>
<td>HBM3</td>
<td>HBM3E</td>
<td>HBM4</td>
</tr>
<tr>
<td>HBM Thickness</td>
<td>720um</td>
<td>720um</td>
<td>775um</td>
</tr>
<tr>
<td>Stack #</td>
<td>8/12H</td>
<td>8/12H</td>
<td>12/16H</td>
</tr>
</tbody>
</table>

Architecture
- **Structure**
 - 8H-Stack
 - 12H-Stack
 - 16H-Stack
 - Customized HBM

Technology
- **Joint Gap**
 - TCB: 9um/7.3um
 - HCB: 7.3um
 - <7.0um
 - Gapless

2024 Heterogeneous Integration Roadmap (HIR)
TCB HBM-12H in mass production (’23), HBM-16H sample developed

Advantages of TCB

- **Joint Thermal Resistance**
 - Up to 35% vs MR-MUF
 - Higher Bump Density
 - Less Joint Gap

- **Chip Thickness for High-Stack**
 - Up to 15% vs MR-MUF
 - Less Joint Gap

Samsung Exclusive Material & Equipment

- **NCF Material**
 - Thinner Hybrid NCF

- **CoW Bonder**
 - High Accuracy & Chip Tilt Control

TCB HBM-16H Sample (2023)

- DC Yield > 9x%

2024 Heterogeneous Integration Roadmap (HIR)
HBM-HCB Technology

- HBM 12H function sample developed with HCB ('23), 16H D/C sample developed

TCB
Thermo-Compression Bonding

HCB
Hybrid Cu Bonding

Advantages of HCB
- High-stack
 - Up to 33% \(^1\) vs TCB
- PKG Thermal Resistance
 - Up to 20% \(^1\) vs TCB

Samsung Exclusive Equipment & Technology

HCB Bonder
- High accuracy & chip tilt control
- Facilities internalization by Samsung

μ-Particle control
- Class 1 facilities
- Protection layer coating

BEOL Metal design for HCB
- Surface topology control
- Cu pad expansion control

12H Function Sample (2023), 16H D/C Sample (2023)
(Presented at '23 ECTC)

2024 Heterogeneous Integration Roadmap (HIR)

\(^1\) Same Chip & HBM PKG Thickness
AVP History for 3D Logic Stacking

- High I/O density and fine pitch development required for HPC/AI applications
3D Logic Stacking Roadmap

- 3D logic readiness through technology verified in memory mass production

TCB
- **Bump Pitch**: 24 um, 21 um, 18 um, <15 um (28-)
- **IO density (Bump/mm²)**: 1,736, 2,267, 3,086, 4,444 (28-)
- **PDK**: SF5/4, SF3P/2
- **Mass Product**: 1)

HCB
- **PAD Pitch**: 4 um, 2.5 um, <2 um
- **IO density (Pad/mm²)**: 62.5K, 160K, >250K
- **PDK**: SF3P/2
- **Mass Product**: AP, HBM2)

1) 16 HBM2, 18 CIS-3Stack MP
2) Mass production ready

2024 Heterogeneous Integration Roadmap (HIR)
3D Logic Stacking-TCB Technology

- 25um pitch ready for mass production through TCB-NCF technology

Advantages of TCB-NCF
- High IO density, Low Thermal Resist.
 - Up to \(x2 \) in IO count
 - Up to 5% \(T_j \) at AP
- High Productivity
 - Up to 13% reduction in Assy. step
 - Fine Pitch
 - Less Joint Gap
 - Less Process step
 - MP Proven

25um Pitch MP ready (‘23)

TCB-NCF
- Thermo-Compression Bonding
- Non-Conductive Film
 - >25um
 - >10um

MR-CUF
- Mass Reflow-Capillary Underfill
 - >35um
 - >30um

Samsung MP Proven Tech.

Process & Material
- TC Profile & NCF Viscosity control

Infra
- Exclusive tool
- Equip. Compatibility

2024 Heterogeneous Integration Roadmap (HIR)
3D Logic Stacking-HCB Technology

- 3μm ultra fine pitch technology verification complete

3D HCB
(3μm Pitch, Joint Gap 0μm)

3D TCB
(25μm Pitch, Joint Gap 12μm)

Samsung Exclusive Process

Process & Tool
- High precision alignment & bonding

Structure
- Thin bottom structure without Thermal dummy

Advantages of Samsung’s 3D HCB

I/O Density
Up to X70
3μm vs. 25μm Pitch

Allowable Power
Up to 33%
vs. μ-bump

3μm Ultra Fine Pitch Feasibility (~23)
for Adv. Node Device (SF4/5, ~26 PDK release)

2024 Heterogeneous Integration Roadmap (HIR)
I-Cube Roadmap

- I-Cube enables larger interposer, more HBM's and multi-die for AI/Date center applications

<table>
<thead>
<tr>
<th>2018</th>
<th>2020</th>
<th>2022</th>
<th>2024</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interposer Size (Reticle)</td>
<td>In Mass Production('20)</td>
<td>In Mass Production('20)</td>
<td>Production Planned (MP '24)</td>
<td>2x</td>
</tr>
<tr>
<td>PKG Size</td>
<td>65x65 mm²</td>
<td>85x85 mm²</td>
<td>100x100 mm²</td>
<td>130x130 mm²</td>
</tr>
<tr>
<td>ISC Cap density</td>
<td>1500nF/mm²</td>
<td>2200nF/mm²</td>
<td>2750nF/mm²</td>
<td>4400nF/mm²</td>
</tr>
</tbody>
</table>

2024 Heterogeneous Integration Roadmap (HIR)
I-Cube E Technology

- I-Cube E is the cost-effective PKG solution with panel level technology.

![Samsung I-Cube E Platform](image)

Cost Efficiency + Expandability
- Si Interposer → Si Bridge + RDL

 - Si Interposer Net Unit 12ea/Wf
 - *12xHBM (51x68mil)
 - Si Bridge Net Unit 1,060ea/Wf
 - *Si-Bridge 87x66mil (13 ea/PG)

Productivity
- Wafer Level → Panel Level

 - 12ea/Wf → *x3
 - >36ea/Wf

Performance
- Low Loss @ SerDes 112G

 - Loss(SerDes 112G) : TSV > Cu Post w/ EMC
 - *HBM3E 8Gbps & Adv. UIC: 32Gbps is equivalent

2024 Heterogeneous Integration Roadmap (HIR)
Contents

Introduction

Samsung AVP Platform Solutions

HPC / AI
- HBM
- 3D Logic
- I-Cube

Mobile AI
- Mobile AP
- Low Power Wide I/O Memory

Heterogeneous Integration Eco System

2024 Heterogeneous Integration Roadmap (HIR)
Samsung AVP Solutions for AI: Mobile Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* # of I/O, BW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPDDR5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPDDR6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP Wide I/O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D PKG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Thermal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Fine Pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D FO-WLP 7/8µm RDL, Mono Die</td>
<td>23.1Q</td>
<td>23.2Q</td>
<td>24.4Q</td>
<td>25.4Q</td>
<td>25.1Q</td>
<td>25.4Q</td>
</tr>
<tr>
<td>2D FO-WLP HPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D FO-WLP 5/6µm RDL, Multi-Die</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D FO-WLP HCB 4µm Bump Pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D PKG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Fine Pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D TCB</td>
<td>23.4Q</td>
<td>24.4Q</td>
<td>24.4Q</td>
<td>24.4Q</td>
<td>24.4Q</td>
<td>24.4Q</td>
</tr>
<tr>
<td>3D HCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2024 Heterogeneous Integration Roadmap (HIR)
Fan-Out PKG Roadmap

- FOWLP with chip last & double sided RDL is in mass production for mobile AP (‘23~)
- Key technologies are under development for On-Device applications such as mobile AP and LPW memory.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Mobile AP</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>I-PoP Memory</td>
<td>FOWLP Memory</td>
<td>FOWLP-HPB Memory</td>
<td>FOWLP-SIP Memory</td>
<td></td>
</tr>
<tr>
<td>Heat resist.</td>
<td>x 1.00</td>
<td>x 0.85</td>
<td>x 0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UClle I/O</td>
<td></td>
<td></td>
<td></td>
<td>x 16</td>
<td>x 32</td>
</tr>
<tr>
<td>LPDDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x 512</td>
</tr>
<tr>
<td>Tech.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si thickness</td>
<td>110um</td>
<td>215um</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Side RDL</td>
<td>7/8um</td>
<td>2/2um</td>
<td></td>
<td></td>
<td>1/1um</td>
</tr>
<tr>
<td>Cu Post AR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥6:1</td>
</tr>
</tbody>
</table>

2024 Heterogeneous Integration Roadmap (HIR)
Fan-Out PKG Technology for Mobile AP

- Samsung’s Fan-out PKG with Advantages for TAT, Architecture and Thermal Performance.

Samsung’s MP Proven Processes

- **Chip Last**
 - Samsung’s CoW technique

- **Double-sided RDL**
 - Unique tape carrier (exclusive)
 - High AR Cu Post process

Advantages of Chip Last-D.RDL (AVP)

- **Process TAT**
 - Up to \(\times 33\% \) vs Chip First/D.RDL
 - Pre-made F.RDL

- **Architecture Flexibility**
 - Back side RDL

- **Heat resistance**
 - Up to \(\times 45\% \) vs I-PoP
 - Heat path block

2024 Heterogeneous Integration Roadmap (HIR)
Fan-Out PKG Technology for Low Power Wide I/O Memory

- FOPKG with Vertical Interconnection of multi-die stacks enables to increase I/O density & BW.

Wire Bonding
- FBGA

Vertical Interconnection
- VWB
 - *VWB: Vertical Wire Bonding*
- VCS
 - *VCS: Vertical Cu PostStack*

Samsung’s New Architecture & Process
- **Cu Post**
 - High AR Cu Post ≥6:1 (24)
- **RDL/Bumping**
 - Wafer Level Fine Pitch RDL & Bump Process (MP Ready)

Advantages of VCS (AVP)

I/O Density, Band Width
- Up to \(\times 8 \) vs FBGA
- Up to \(\times 2.6 \) vs FBGA

High Productivity
- Up to \(\times 9.0 \) vs VWB

- Finer pitch (≤60μm)
- High AR Cu Post (≥6:1)
- Shorter process time (≥ I/O x256)
- Wire bond → Cu Post

2024 Heterogeneous Integration Roadmap (HIR)
Contents

Introduction

Samsung AVP Platform Solutions

HPC / AI

- HBM
- 3D Logic
- I-Cube

Mobile AI

- Mobile AP
- Low Power Wide I/O Memory

Heterogeneous Integration Eco System

2024 Heterogeneous Integration Roadmap (HIR)
Heterogeneous Integration Eco System

- Overcoming semiconductor technology challenges through collaboration between Samsung AVP’s HI platforms and our partners’ specialized expertise

EDA Design methodology
- Cadence
- Synopsys
- Ansys
- Siemens

Chiplet IF Including memory
- UCIe
- JEDEC
- Samsung Foundry
- Cadence
- Synopsys

OSAT Cooperation
- Amkor Technology
- ASE
- JCET

PCB & More Supply Chain
- IBIDEN
- KYOCERA
- Samsung
- Shinko
- TOPPAN

2024 Heterogeneous Integration Roadmap (HIR)
Samsung AVP R&D Across the Globe

- Multiple portals for research and development collaboration between Samsung and Partners

2024 Heterogeneous Integration Roadmap (HIR)
Thanks

Introduction

Samsung AVP Platform Solutions

HPC / AI
- HBM
- 3D Logic
- I-Cube

Mobile AI
- Mobile AP
- Low Power Wide I/O Memory

Heterogeneous Integration Eco System

2024 Heterogeneous Integration Roadmap (HIR)