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Note

• Ideas and material presented in the following slides are my 
view of a good technology direction and may or may not 
represent development or product direction for Samsung.  If 
interested in those details, an NDA discussion would be 
required.
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Global SAIT (Samsung Advanced Institute of Technology) Labs

• SAIT was established in 1987 as a corporate R&D Center

- Founding Philosophy: "Boundless Research for Breakthroughs"
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Systems Architecture Lab

• Vision
‐ To develop the most innovative technologies for future HPC and AI systems

• Strategy
‐ To break through the memory wall by significantly increasing the memory byte/flop 

ratio and reducing the power per bit with memory coupled compute

‐ To break through the communication wall with high network byte/flop ratio utilizing 
memory coupled compute efficiencies and novel fabric technologies
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Overview

• An inspiring observation

• Key considerations for HPC and AI systems

• The memory wall

• Tight coupling

• The communication wall

• Putting it all together

• Conclusion
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Discontinuities

• Vectors (Cray)

• Microprocessors (Beowulf) 

• Multicore, multithread (x86/ Power)

• Massive parallelism (Blue Gene) 

• Heterogeneity (GPUs)

• Memory coupled compute
‐ The next discontinuity

‐ Innovate the future collaboratively

Source: Wikipedia.com based on data from the top500.org

2x every
2 years

2x every
1.3 years
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Key Considerations for HPC and AI Systems

•Memory

• Efficiently utilizing compute
‐ Note: not more compute

•Communication
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The Memory Wall
• Coined in 1995

‐ William A Wulf and Sally A Mckee
• ACM SIGARCH computer architecture news, 1995

‐ Observed that processors are getting faster faster than memory is getting faster
• “each is improving exponentially, but the exponent for microprocessors is substantially larger 

than that for DRAMs. The difference between diverging exponentials also grows exponentially”

‐ DDR
• DDR2-200 1.6 GB/s released 1999 available in 2000

• DDR5 32-64 GBs released 2020 available in 2021

‐ HBM
• HBM 128 GB/s adopted and available 2013 used 2015

• HBM3 819 GB/s January 2022 
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• https://daydaynews.cc/en/science/the-biggest-obstacle-to-ai-training-is-not-computing-power.html

The Memory and Communication Wall is getting Higher

• Modeling and simulation, and some AI apps, are memory bandwidth limited

• AI, and some mod/sim, applications are communication bandwidth limited

https://daydaynews.cc/en/science/the-biggest-obstacle-to-ai-training-is-not-computing-power.html
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Many Applications are Memory Bound
• The increasing divergence 

between compute and memory 
has led to an increasing number of 
applications that are memory 
bound

• The best component to improve 
modeling and simulation 
applications’ performance is 
memory bandwidth

HPC Benchmarking: Scaling Right and Looking Beyond the Average, 
Milan Radulović et. al., International Conference on Parallel and 
Distributed Computing, 2018
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Impact of Memory Performance

12



SAIT 13

Addressing the Memory Wall
• Put compute close to memory

‐ 2.5D (Processing near memory)
• Current technology

• HBM co-packaged with compute

‐ PIM (Processing in Memory)
• Closest possible to memory

• Current constraints limit functionality

‐ 3D
• Compute closer to memory than in 2.5D

• Reduces power consumption

• More efficient packaging than in 2.5D
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2.5D Opportunities and Challenges
• Significant improvement over DDR

‐ Bandwidth is higher

‐ Latency on par

• Substrate and connections can
be expensive

• Requires off die connection from
logic to HBM

‐ Off-die signals require more power

‐ Takes die area to connect the wires
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PIM Opportunities and Challenges

• Most energy efficient compute
‐ ALUs on same die as memory cells

‐ Data movement is minimal

• The type of operations are constrained
‐ ALUs reduce memory are or increase die area

• The operations are synchronous
‐ If conforming to JEDEC standard

AXDIMM
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3D

• Improves power efficiency
‐ Data moves less

• Reduces latency
‐ Data travels less distance

• Allows general purpose logic

• Key decisions
‐ What compute

• Keep the programming model productive

‐ How much compute
• Provides opportunity for high B/F ratio

Closer coupling of compute with memory

e.g. 3D systolic ML accelerators in IEEE Journal on 
Exploratory Solid-State Computational Devices and 
Circuits – June 2021
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Productively Utilizing Compute - Tight Coupling

• Accelerators are more challenging to use than general purpose cores

• Accelerators have higher efficiency than general purpose cores
‐ Performance/power

‐ Performance/cost

• A tightly coupled architecture allows more productive use of accelerators
‐ Bandwidth

‐ Latency

‐ Coherency
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GPUs and Today’s AI have Co-Evolved

• As AI progressed GPUs included features useful to them
‐ Volta (2017) introduced tensor cores a 4x4 matric multiple and accumulate

‐ Turing (2018) introduced integer tensor cores

‐ Support of BF16
• Considerations to further optimize for stability and convergence

• As GPUs progressed AI applications were modified to leverage new features
‐ On early GPUs there was long latency, low bandwidth, disparate memory regions

• Codes (especially inference) written to be [off]loaded once to GPU

• We are done – right ?
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GPUs and Today’s AI Have Co-Evolved
• As AI progressed GPUs included features useful to them

‐ Volta (2017) introduced tensor cores a 4x4 matric multiple and accumulate
‐ Turing (2018) introduced integer tensor cores
‐ Support of BF16

• Considerations to further optimize for stability and convergence

• As GPUs progressed AI applications were modified to leverage new features
‐ On early GPUs there was long latency, low bandwidth, disparate memory regions

• Codes (especially inference) written to be [off]loaded once to GPU

• GPUs and HPC have not Co-Evolved as closely as GPUs and AI
‐ Many key HPC codes were written before GPGPUs
‐ Large AI codes are becoming more HPC like
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HPC Leveraging Accelerators Still Requires Work

• Portions of HPC applications need or prefer serial cores
‐ Many HPC applications remain bulk synchronous

• Percentage of parallel code may be high

• Interrupted by code that can not or would be better not run on accelerator

‐ Brachy code between loops

‐ MPI runtime and communication

• Running higher percentage of code on accelerator improves performance
‐ Higher percentage of off-loadable code implies finer-grained parallelism
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HPC Leveraging Accelerators Still Requires Work
• Portions of HPC applications need or prefer serial cores

‐ Many HPC applications remain bulk synchronous
• Percentage of parallel code may be high
• Interrupted by code that can not or would be better not run on accelerator

‐ Brachy code between loops
‐ MPI runtime and communication

• Running higher percentage of code on accelerator improves performance
‐ Higher percentage of off-loadable code implies finer-grained parallelism

• There is a cost to running on accelerator due to
• Bandwidth for accelerator to access data
• Latency to launch first line of code

• Hardware and software components

• There is a development effort to run code on accelerator
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• https://daydaynews.cc/en/science/the-biggest-obstacle-to-ai-training-is-not-computing-power.html

The Memory and Communication Wall is getting Higher

• Modeling and simulation, and some AI apps, are memory bandwidth limited

• AI, and some mod/sim, applications are communication bandwidth limited

https://daydaynews.cc/en/science/the-biggest-obstacle-to-ai-training-is-not-computing-power.html
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Addressing the Communication Wall
• Closer coupling of compute with memory and communication

‐ Cost-efficient performance

‐ Power sharing

• 3D packaging  higher communication performance
‐ High point-to-point and all-to-all bandwidth

• Large supernodes with productive programming model
‐ Valuable to AI models for large reductions and large data exchanges, parallel FFT

‐ Utilize a productive programming model
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Supernode Desired Properties 
• Much larger set of nodes with SMP-like 

behavior
‐ Capabilities that would be advantageous: low 

latency, high bandwidth, atomics, globally 
accessible memory between nodes

• Programming model to allow developers to 
transparently or explicitly leverage above 
capabilities

• Semi-custom fabric to enhance power 
properties

• A shared memory model for productive 
prorgamming

node

Supernode

semi-custom
supernode

fabric

node

node

node

node node

node
node
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Benefits of the Supernode for Strong Scaling
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System Overview

•Key innovations to advance HPC and AI
‐ Memory Coupled Compute

‐ Productive and tight-coupling of mainstream cores with accelerators 

‐ Supernodes (large and high-performing globally accessible memory )

‐ System-level energy-efficiency
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Benefits for a Classical HPC and an AI Training Application

• Memory and communication 
bound classical HPC code

‐ Y axis performance: higher is better

• Communication bound 
BF16 hungry multi-T AI app

‐ Y axis time: lower is better
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OpenHPC
as base

MCC SoCHardware Inter-node Connection

Operating System Linux / Lightweight OS

Application HPC Simulation AI / Deep Learning Data Analysis

Framework
Library

TensorFlow PyTorch scikit-learnMATLAB BLAS

Profiler
Debugger

Score-P VAMPIR Valgrind GDB ARM DDT

File System Lustre / DAOS

Parallel 
Programming

OpenMP OpenACC SYCL Kokkos MPI

Programming 
Language

C/C++ Fortran Python Julia Java

Management SLURM LSF Docker Singularity Spack

Standard Productive Software Stack
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Innovating the Next Discontinuity

• The time is right to innovate the next discontinuity
‐ Vision: In the future memory coupled compute will be ubiquitous

• Tightly coupling memory, compute, and communication will allow 
future optimizations

• Focusing on exploring technology for AI and HPC  systems
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Thank
You
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