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1. Introduction 

Digital Twins (DT) have become a groundbreaking 

concept in the field of electronics packaging and 

electronic systems. In an era characterized by rapid 

technological advances and increasing complexity 

in electronics packaging products, digital twins offer 

a revolutionary approach.  

These virtual replicas of physical semiconductor 

circuits, electronic devices, or systems provide 

engineers and researchers with invaluable 

information, enabling real-time monitoring, analysis 

and optimization. This innovative technology not 

only improves product development and 

performance, but also significantly streamlines 

design and manufacturing processes, ultimately 

pushing the boundaries of what is possible in the 

world of electronics packaging and electronics 

enabled systems.  

However, it’s worth noting that the concept of 

digital twins can sometimes vary depending on the 

context, application field, and one’s expertise or 

experience. In this article, we aim to explore the 

diverse applications of digital twins in the 

electronics industry, starting with an examination of 

various existing definitions. 

Digital Twin Definition 

Digital Twin was originally defined in the context of 

the aerospace industry [1] as “an integrated 

multiphysics, multiscale, probabilistic simulation of 

an  as-built  vehicle  or  system  that  uses  the  best  

available  physical models,  sensor  updates,  fleet 

history, etc., to mirror the life of its corresponding 

flying twin”. Similarly, there are several other 

definitions of a Digital Twin in the literature. They 

are highly contextual and application-specific., and 

thus, contain technical jargon. They also don’t 

necessarily translate well to the other applications.  

It’s rare to find a fit-for-all definition, primarily due 

to the fact that the concept continues to evolve. 

Some of the generalized definitions are reviewed 

below: 

Digital Twin consortium [2] defines a digital twin as 

“a virtual representation of real-world entities and 

processes, synchronized at a specified frequency 

and fidelity”. This definition is a concise description 

of the Digital Twin concept. 

The Heterogeneous Integration Roadmap (HIR) [3] 

describes a digital twin as “the instantiated model 

(numerical, analytical, hybrid) of a specific asset or 

device, which is deployed (in the cloud or on an edge 

device) and connected to the physical device. The 

connection may be established through sensors 

installed at the device or other sources collecting 

specific information, delivering a continuous data 

stream fed into the model or as boundary condition 

or as reference value”. 

In the 2022 IEEE EPS Newsletter [4], it is defined 

as “a continuously updated virtual representation of 

an object, system, or process which replicates all 

phases in the lifecycle of its physical counterpart”. 

As the importance of Digital Twins keeps growing, 

it is crucial to have a generic fit-for-all definition of 

the Digital Twin, which also includes the 

technologies involved in it but is also concise. Thus, 

an updated definition proposed by the authors is as 

follows:  

“Digital Twin is a continuously updated multi-

physics, multiscale, probabilistic simulation model 

of a physical entity (an object, a system, or a 

process) utilizing big data, bilateral connectivity, 

and advanced software analytics to provide product 

monitoring, diagnostics, prognostics, and 

optimization services”. 

2. Concept of Digital Twin 

In the context of electronics packaging, a Digital 

Twin is an advanced, all-encompassing simulation 

of an intricate electronic product, integrating multi-

physics, multi-scale, and probabilistic virtual 

models. It leverages the sophisticated physical and 

AI models, and sensor network to mirror the real-

time evolution of its counterpart. 

The notion of a digital twin is a composite construct, 

encompassing the physical product, its virtual 

counterpart, and a network of interconnected data 

that bridges the realms of the physical and the virtual 

spaces. This concept serves as a catalyst for 

achieving a seamless convergence between the 

physical product and its virtual representation. 

Digital twins can be implemented at the unit level 

(e.g., equipment), system level (e.g., multiple pieces 

of equipment which cooperate), and factory (or fab) 

level [5]. 



 

Digital Twin Architecture 

Initially, a three-dimensional architecture of a 

Digital Twin was proposed by Michael Grieves [6]. 

It consists of three fundamental components—the 

physical entity, the virtual model, and the 

connection enabling data exchange. A five-

dimensional modified version was later introduced 

in 2018 by Fei Tao et al. [7].  

Figure 1 indicates the five-dimensional DT system. 

It has the following five key components: physical 

entities, virtual models, data, connections, and 

services. The new model defines ‘data’ and 

‘connections’ as independent aspects of the DT 

system and introduces a new ‘services’ node. 

 

Figure 1: Five-dimensional Digital Twin architecture 

The ‘physical entity’ can be a product, process, or 

business. It should be equipped with data collection 

capabilities and device control protocols. For 

example, an electronic product should be equipped 

with sensors to collect, process, and transmit data for 

its condition monitoring.  

The ‘digital model’ is a comprehensive model of the 

physical entity capable of multiscale multiphysics 

simulations. The digital model is continuously 

updated to replicate the current (degraded) state of 

the physical product based on the collected sensor 

data and inputs from the ‘data’ node. The digital 

model can provide additional data using simulation-

based virtual sensors, especially where it’s not 

practical or possible to have a physical sensor 

placed/measurement done. 

The ‘data’ node collects, stores, and processes the 

data coming from real and virtual sensors. It handles 

the data-driven aspect of a Digital Twin and can run 

algorithms (on the cloud, at the edge, or as a 

combination of both) for failure classification, 

Remaining Useful Life (RUL) estimation, and 

optimization problems. Based on the results 

generated by the ‘data’ and ‘digital model’ nodes 

(data-driven and physics-based approach, 

respectively), services such as anomaly detection 

and reliability prediction can be built.  

The prediction ‘services’ serve as an input for 

making design modifications to the physical product 

and for improving the other two nodes. Lastly, the 

‘connection’ node ties the other four nodes together. 

It serves the same role as in the three-dimensional 

DT architecture, but a distinct definition underlines 

the importance of efficient communication and 

interoperability of the exchanged information 

between the rest of the nodes. 

Digital Twin Workflow 

The concept of a digital twin operates through a 

three-step process that involves data association, 

forecast, and control, utilizing relationships derived 

from physics-based or (data-driven) AI models 

along with statistical characteristics of diverse 

collected data. Digital twin technology embodies 

several key characteristics that distinguish it as a 

powerful and dynamic tool in various industries [8]. 

The following characteristics are intricately woven 

into its functionality, enabling it to provide valuable 

insights and drive continuous improvement: 

(1) Real-Time Reflection: It captures data from 

physical systems, such as sensors and devices. The 

choice of sensors depends on the complexity of the 

Digital Twin, mainly on which (degenerative) 

changes the virtual models are capable of reflecting. 

Using the collected data, a DT promptly mirrors 

these inputs in the virtual environment. This real-

time reflection ensures that the digital twin's 

representation remains current and aligned with the 

actual state of the physical counterpart, enabling up-

to-the-minute analysis and decision-making.  

(2) Interaction and Convergence: Digital twins 

enable interaction and convergence on multiple 

fronts including between historical data and real-

time data, and between the physical space and the 

virtual space. In order to trust the real-time data, the 

sensors should be robust to withstand application-

specific operating conditions as well as capture the 

environmental loads and their effects on the 

monitored components. Specialized sensors would 

be either embedded on the same chip/in the same 

package, or accompanying on the same board, or 

even externally placed near the monitored 

components. Extensive calibration of the sensors 

using experiments and virtual models is crucial prior 

to their deployment for prognostics and health 

management (PHM). 

(3) Self-Evolution – Continuous Improvement: 

Digital twins possess the capability of self-

evolution. This is achieved by continuously 

comparing the virtual representation (simulation, 

model) with the real-time data streaming from the 

physical counterpart. Discrepancies between the two 

are identified and analyzed, enabling the digital twin 



 

to adapt, learn, and improve its accuracy and 

predictive capabilities over time. This self-evolution 

mechanism drives ongoing refinement, making the 

digital twin increasingly adept at predicting 

behavior and suggesting optimal courses of action. 

Digital Twinning Approach 

Digital Twins can be built based primarily on two 

approaches – physics-based and data-driven. A 

physics-based twin relies on the knowledge of 

physics-of-failure or physics-of-degradation models 

to represent accurate thermal, electrical, chemical, 

and mechanical behavior of materials. This 

approach is good for accurately representing (only) 

known physical phenomena using mathematical 

relations but may not capture all aspects of the 

physical reality. 

A data-driven approach relies on the sensor data 

from the physical product, i.e., real in-situ 

measurements. At the same time, the inherent black-

box structure cannot describe the mapping between 

the input data and prediction. A hybrid approach 

combines workflows of both physics-based and 

data-driven approaches and can overcome their 

individual limitations. 

What is NOT a Digital Twin? 

The term Digital Twin is often used freely and 

interchangeably with different digital 

representations of a physical entity. This, however, 

misrepresents the actual concept. Thus, to avoid 

confusion and keep consistency, it is crucial to 

understand and clearly define what a Digital Twin is 

not. 

A multiphysics multiscale model is commonly 

referred to as a Digital Twin. Although such a model 

accurately represents its physical counterpart (e.g., 

with a high fidelity Finite Element model), it cannot 

be classified as a Digital Twin, unless it can be 

continuously updated through the information 

exchange with its physical counterpart to represent 

its current (aged) state. Bilateral communication is 

the key to differentiate a model (essentially just an 

instance of a Digital Twin) from a Digital Twin. 

A physical entity can be represented in the form of a 

control system flow diagram. Such a representation 

also cannot be called a Digital Twin, unless it can be 

updated based on the physical entity. Even when it 

satisfies the criterion of continuous update, a control 

diagram by itself does not suffice in entirely 

representing the physical entity. Thus, at the most, it 

can be classified as one aspect of the (data-driven) 

Digital Twin. 

3. Examples of Digital Twin Implementations 

The generalized Digital Twin workflow and 

architecture can be adopted for different 

applications of electronic packaged components and 

associated electronics enabled systems. This section 

delves into examples of DT implementation in six 

different application fields. 

a. Manufacturing  

Semiconductor manufacturing has become more 

complex over the past two decades. Test and 

Validation sit at the natural crossroads between 

product Design and Manufacturing.  Test data helps 

guide the design by providing performance and 

quality feedback based on real-world operational 

conditions, and Test provides feedback to the 

manufacturing process to ensure product defects are 

properly screened and product performance is 

optimized.   

In the manufacturing of chiplet-based 

heterogeneous-integrated product packages, we are 

rapidly approaching in this decade a critical time 

where our packaged product quality levels will be 

unsustainable and therefore eventually unsellable.  

This is driven by the fact that the composite yield of 

any chiplet-based package is the product of each of 

the individual chiplet yields and the overall package 

assembly yield.  As a result, sellable products 

require very high-quality characterized known good 

die (cKGD) coming out of wafer test.   

Chiplets have to be known-good, which is a quality 

metric, but we also need to have an accurately 

characterized assessment of their behavior and 

performance when placed into a package with other 

chiplets.  In order to guarantee full-package 

performance and reliability, intelligent die pairings 

are needed based on this characterized data from 

wafer-test.  However, since wafer-test and final 

package test conditions are vastly different in terms 

of operating environments (RF, thermal, electrical, 

mechanical), making all wafer-test characterization 

data inadequate. 

A digital twin of the chiplet die and packaging 

behavior across process and environmental 

conditions offers a way to bridge the gap between 

the inadequate wafer-test data and the predicted 

behavior that the chiplet will exhibit under final 

package test conditions.  For example, a digital twin 

final-test model could accurately predict during real-

time package assembly that placing two high-

leakage CPU chiplets directly adjacent to one 

another would raise junction temperature by 5C, 

thus rendering overall package performance 

thermally challenged.  The model could then make 

recommendations for assembly to make better die 

pairing choices to optimize overall final-test 

package performance and yield, and allow for 

product configurations that would not otherwise be 

possible. 

High-Mix Low-Volume (HMLV) production of 3D 

Heterogeneous Integration (3DHI) systems presents 



 

several challenges including demand variability, 

resource allocation, production scheduling, 

inventory management, supplier coordination, 

supply chain complexity, changeover and setup 

times, quality control, workforce flexibility, and 

lead time management. The fab level digital twin 

that consists of sub-components such as physical 

fab, virtual fab, and the service system including 

supply chain management (SCM), enterprise 

resource planning (ERP), manufacturing execution 

system (MES), and product lifecycle management 

(PLM) can significantly contribute to solving the 

challenges faced in a HMLV production 

environment. Some of the manufacturing challenges 

in HMLV and corresponding Digital Twin-based 

solutions are as follows: 

(1) Demand variability – The digital twin can 

enhance demand forecasting accuracy. This enables 

better resource allocation and production scheduling 

to accommodate demand variability effectively. 

(2) Resource allocation, utilization, maintenance – 

By linking the digital twin with ERP and MES 

systems, the fab can optimize the allocation of 

resources based on real-time production 

requirements and product mix, reducing 

underutilization and overutilization of resources. 

The digital twin's simulations can identify 

opportunities to optimize production processes, 

minimize waste, and reduce production costs per 

unit by testing various scenarios virtually. 

Semiconductor fabrication facilities are equipped 

with numerous complex machines and equipment. 

Digital twins can be used to create virtual replicas of 

these devices and monitor their real-time 

performance. By analyzing data from sensors, 

maintenance teams can predict equipment failures, 

schedule proactive maintenance, and minimize 

downtime. 

(3) Production scheduling; Changeover and setup 

times – The digital twin can simulate and optimize 

production schedules considering changeover 

times, minimizing downtime and maximizing 

efficiency. Real-time data from MES and virtual 

factory can guide adaptive scheduling based on 

actual production conditions. 

(4) Inventory management – Integration of the 

digital twin with SCM, ERP, and MES systems 

allows for dynamic inventory management, 

ensuring that the right components are available at 

the right time, minimizing stockouts and excess 

inventory. 

(5) Supplier coordination/Supply chain complexity 

– Real-time data exchange between the digital twin 

and SCM system enables better coordination with 

suppliers, ensuring timely delivery of materials 

and components for different products. By 

integrating SCM data, the digital twin can analyze 

supply chain performance and identify areas for 

optimization, such as selecting alternative 

suppliers or optimizing transportation routes. The 

digital twin can simulate potential disruptions in 

the supply chain or production process, enabling 

proactive risk management and resilience 

planning. 

(6) Quality control / Cost of customization – The 

digital twin can simulate quality control processes 

and provide training simulations for the workforce, 

ensuring consistent quality across product variants 

and facilitating cross-training. The digital twin can 

simulate the impact of customization requests on 

production processes, allowing for better decision-

making regarding the feasibility and cost of 

customization. 

(7) Workforce flexibility – The digital twin serves 

as a common platform for communication and 

collaboration among different departments, 

suppliers, and partners, enhancing overall 

coordination and efficiency. 

(8) Lead time management – The digital twin can 

provide visibility into lead times at different stages 

of the production process, helping in managing 

customer expectations and optimizing delivery lead 

times. 

b. Optical Networks 

Optical networks are transforming rapidly in today’s 

age. Networks are in constant need of monitoring of 

hardware resource allocation and network 

virtualization. Due to the architectural complexity of 

networks in terms of hardware fabric, various 

modulation schemes, variable wavelength grids and 

software-defined networks, the need for real-time 

monitoring and maintenance of networks is crucial.  

Additionally, ensuring reliable and efficient 

operation of these systems and intelligent and self-

correcting of such networks is indispensable to the 

reliability and resiliency of the communication 

infrastructure.   

To address some of these challenges, use of a digital 

twin (DT) has been proposed. DT can potentially 

integrate data and information among multiple 

platforms by providing link monitoring capabilities 

and improvement of overall network connectivity 

and resilience. Network simulations, hardware 

configuration and fault management schemes are 

examples of functions that can be leveraged by DT 

in networks. 

In a network enabled by DT, real time traffic is 

sensed and monitored. This data is stored in servers 

and is modeled post data mining and processing. 

Each digital model is used to address specific 

requirements in the physical space. These collective 

virtualized models will enable smart and real time 

monitoring of the network that is continuously 

synchronized based on the use. 



 

c. Data Centers, HPC & Hybrid Computing 

The massive growth in data centers raised interest 

and regulations for the management of waste heat 

and its utilization.  This area has seen increased 

applications of a combination of DT and ML 

frameworks to optimize the ventilation and cooling 

of data units and processors in the system.  For 

instance, a model of a data center could include flow 

rates and air cooling at the multiple ventilation ports 

and base cooling of processors.  A thermo-fluid 

model, combined with a genomic-based ML 

algorithm can translate into a DT replica of the 

system, capable of running in real time or faster than 

the actual system.  As a result, the model becomes 

suitable as either a design tool or an adaptive 

controller [9]. 

Extending DT to other areas such as reliability, fault 

tolerance, and failure preparedness for data centers 

and High-Performance Centers (HPC), however, is 

a multi-disciplinary problem.  System architects, 

software developers, and site operators must have a 

deep understanding of network reliability at scale, 

along with the software systems running at these 

centers.  Little has been reported previously on the 

reliability characteristics of large-scale network 

infrastructure.  Two recent multi-year studies 

reported the breakdown in failures and the impact on 

the services provided. 

One seven-year investigation carried out by 

Facebook (Meta) and Carnegie Mellon University 

[10] reported the reliability of twelve geographical 

distributed data centers over the world.  In this case, 

only 13% of the failures originated from hardware 

(from well-established technologies and mature 

silicon nodes), while the bulk of the incidents came 

from software configuration, bugs, and 

maintenance.  The corresponding MTBF (Mean-

Time-Between-Fail) was about three months.  When 

migrating to advanced technology nodes, however, 

the picture was reversed. 

An eight-year study of HPC (sometimes also called 

Extreme Scale Supercomputers) conducted by Intel 

and Oak Ridge National Laboratory [11] on several 

different systems (0.27 Petaflops to 27 Petaflops) 

with processor and GPU latest nodes from Intel, 

AMD, and Nvidia revealed that hardware errors 

accounted for close to 85% of the incidents, and the 

normalized MTBF was less than one day!  There are 

many challenges to the application of DT for 

predicting the reliability of such a system:   1. The 

likelihood of failures has increased with the ever-

larger number of components;   2. With shrinking 

process technologies, processors have become more 

susceptible to soft errors,  manufacturing defects, 

and process variation errors;  3. Managing system 

reliability becomes more complex as the system 

grows and multi-level redundancy is required. 

With the advent of quantum computers, a substantial 

increase in computational capabilities compared to 

classical computer architectures becomes available 

for a range of problems.  Quantum computers can 

make significant contributions to HPC.  However, 

quantum computing (QC) alone cannot achieve this 

goal as it needs both current and future HPC systems 

to provide pre- and post-processing to stage 

operations, and to enable hybrid applications 

combining computational elements suited for QC 

with those that are not.  Close integration between 

QC and the HPC ecosystem to form a new integrated 

HPC+QC framework is required.  Quantifying and 

characterizing the system failures is the first step to 

improving the performance of this hybrid stack and 

the development of a DT framework for hybrid 

computing. 

d. Automotive 

Digital twins are becoming increasingly essential in 

the automotive industry, just as they are in other 

sectors. Various methods for creating digital twins 

are already available, such as empirical and 

analytical models, finite element simulations, model 

order reduction, and regression-based models. 

While these methods are powerful for linear 

systems, addressing the challenges posed by highly 

nonlinear and temperature-dependent systems, 

especially those operating in harsh environments, 

remains crucial. 

Moreover, in the automotive domain, having a 

suitable platform for performing these calculations 

is paramount. Presently, cloud-based solutions offer 

the capability to deploy digital twins, allowing for 

the execution of any type of model, including a full 

3D finite element method (FEM)-based digital twin. 

This flexibility proves invaluable during the 

development phase. However, challenges emerge 

when contemplating field applications. 

The smartSTAR project [12], for instance, has 

focused on developing a compact digital twin 

tailored for the automotive industry. Its primary 

objective was to estimate the thermo-mechanical 

load on solder joints, a common source of fatigue 

and creep damage in automotive electronic 

components. Creep typically arises from isothermal 

storage conditions, while fatigue occurs during 

thermal cycling loading, both of which are 

encountered in the field. 

In our example, a fully verified and validated FEM 

model was used as a reference. Time-temperature 

load profiles, incorporating parameters like Tmax, 

Tmin, dwell time, and ramp rate, were analyzed. 

These profiles were divided into test and validation 

datasets. Based on the reference FEM model, data 

were generated for an artificial intelligence (AI) and 

machine learning (ML)-based compact digital twin. 

In total, 30 pseudo-field profiles were created, with 



 

20 utilized for training the AI/ML model and 10 for 

validation. 

The degradation criterion employed in this context 

was the accumulated creep strain in the solder ball. 

The objective was to predict this strain with 80% 

accuracy concerning the reference value. Figure 2 

illustrates the results for both the reference and 

AI/ML-based digital twin. The light blue curve 

represents the time-temperature loading profile, 

while the red curve signifies the results from the 

FEM reference case, showing the accumulated creep 

strain. The dark blue curve represents the results of 

the compact digital AI/ML twin, with an impressive 

accuracy rate of 96%. 

 

Figure 2: Accumulated creep strain calculated for solder 

joint 

In summary, electronic components and systems in 

the automotive sector necessitate the development 

of compact digital twins based on AI/ML to address 

thermomechanical loading conditions in critical 

design elements. These compact digital twins should 

be deployable on low-computing platforms, such as 

microcontrollers, while producing results 

comparable to those of high-performance FEM 

workstations. This advancement promises to 

significantly impact automotive engineering, 

enhancing both efficiency and accuracy in electronic 

component design and analysis. 

e. Lighting 

Lighting industry is another example where 

products need to withstand harsh environments. 

LED-based products are ubiquitous. They are 

installed in a variety of surroundings – from indoor 

controlled conditions to outdoor harsh weather 

conditions, which can drastically vary across various 

locations on the whole planet and different seasons 

throughout the year. In addition to extreme 

temperature and humidity (or moisture), chemical 

exposure is yet another challenging environment for 

a lighting product installed at paint or chemical 

factories. 

Lighting products are complex systems consisting of 

LEDs, peripheral electronic components, and 

protective materials for covering/packaging them. 

They need to be robust to withstand aforementioned 

conditions. Standard reliability and qualification 

tests are traditionally used to determine the lifetime 

of LED products. However, they are resource 

intensive and expensive. Moreover, they use 

accelerated tests which may not be sufficient to 

replicate the real-life aging of the products.  

The first challenge is partially overcome by adopting 

a simulation-based analysis in addition to the 

traditional reliability tests to save on resources. This 

is, however, not sufficient to tackle the second one. 

An in-situ data driven solution must be in place for 

condition monitoring of the deployed LED products. 

It can enable localized and part-specific condition 

monitoring for a set of identical products installed in 

different ambient conditions. In addition, it can aid 

the simulation-based approach by providing real-

time data coming from one or several active 

products. This can be achieved by utilizing a Digital 

Twin-based lifetime monitoring solution. 

Several steps of creating a Digital Twin of a 

luminaire, which is the baseline physical entity of a 

lighting product, is presented in the article [13]. A 

luminaire consists of five key components – LED 

device, PCB, secondary optics, driver, and 

enclosure. Each component serves a unique role and 

thus could be represented differently with different 

complexity in their respective digital 

representations. Figure 3 illustrates the component 

wise aspects considered to build a Digital Twin of a 

luminaire. 

 

Figure 3: Components of a luminaire and corresponding 

relevant aspects for building a Digital Twin 

LED device operation mainly depends on the PN-

junction temperature (Tj) and the driving current (If). 

They affect the forward voltage drop on the device, 

its output radiant flux and spectrum. A mathematical 

relationship mapping these parameters to the 

governing factors Tj and If, along with ‘cumulative 

stress’ coefficients (scalar functions) to compensate 

for the aging is sufficient for the digital 

representation. 

On the other hand, the enclosure needs to be 

modeled with a full Finite Element simulation, as it 

directly affects thermal performance of the whole 

luminaire. Its digital representation needs to have an 

accurate 3D geometry model with thermal behavior 

of the system. Similarly, PCB modeling involves 

electrical and thermal characterization. The 

secondary optics is modeled with physical 



 

mechanisms like photodegradation and chemical 

reactions, since ‘yellowing’ is the primary aging 

effect. 

This example clarifies how a Digital Twin 

representation of a system (here, a luminaire), 

consisting of different components, can have 

different types of models with different levels of 

complexity based on their respective functional 

relevance. 

f. Power & Energy 

Power and energy systems for electrification and 

renewable energy generation (wind solar, wave, etc) 

are adopting power electronics semiconductors. 

These solid-state electronic devices are used for the 

conversion and control of electrical power. The 

packaging of these power devices – diodes, 

transistors, and thyristors – can be accomplished for 

a single power device (a discrete package) or an 

assembly of power devices (a module). Devices 

within a module (or a single device in a discrete 

package) are then interconnected to perform the 

required function of power conversion. The design 

and materials used for these packaging architectures 

is important as it aims to address the following 

requirements: 

(1) Electrical: Reducing parasitics, for example, 

inductances, and conduction and switching losses 

that cause electromagnetic interfaces problems and 

produce heat.  

(2) Thermal: Ensure that heat generated within the 

module is extracted and the power devices and 

surrounding packaging materials do not become too 

hot. For a module this is achieved through a 

baseplate and possibly a heatsink. 

(3) Mechanical: Providing protection to the power 

devices from the environment (dust, moisture, etc) 

and to ensure that any stress developed due the 

mismatch in material thermal expansion coefficients 

is minimized to meet reliability and robustness 

requirements. 

Physics-based models using solvers such as the 

finite element method [14] and reduced order model 

equivalents [15] have been used extensively to 

support design optimization for both Silicon and 

Wide-Band Gap devices and their packaging. 

Examples of failure modes that need to be assessed 

include wire-bond lift-off, die-attach cracking, and 

delamination of metallization on the substrate, as 

illustrated in Figure 4 for a traditional power 

module. 

Similar to the 5D model for digital twins, using 

digital twins for the lifecycle management (design, 

control, and maintenance) of power electronics-

based energy systems (PEECS) requires 

technologies for each layer such as (a) physical 

entity (power module, system), (b) data (sensors, 

communication, data fusion, etc), (c) virtual twin 

(3D physics models, data driven models, etc) and (d) 

algorithms (AI, etc). Developments in each of these 

areas when combined will form the digital twin of 

the power electronics-based energy system (PEECS) 

[16]. 

 

Figure 4: Traditional interconnect structure and prominent 

failure modes for a semiconductor die in a power module. 

Real-time predictions using fast analysis (e.g. 

model-driven, data-driven, or a fusion of both), 

sensors for data gathering, and identified metrics for 

monitoring module degradation are key 

requirements for successful adoption of digital twins 

for the life cycle management of PEECS. For 

example, Neural Networks have been used to create 

digital twins that can run on a converter digital 

controller where training data for the NARX-ANN 

network is obtained from simulations and is then 

used for fault detection, prognostics, and risk 

assessments [17]. Linking the virtual twin to data 

gathered from the physical system requires sensors. 

For example, condition monitoring using thermal 

data gathered from a power module is a critical 

aspect in assessing the overall performance 

degradation of a power module. Numerous 

techniques are available for this, including contact-

based fibre optic temperature sensors which can 

provide real-time data for analysis [18]. 

Digital twins will continue to evolve and be adopted 

for PEECS. Future trends will see advances in 

modelling platforms (multi-physics/scale), data 

gathering and its fusion, faster compute engines and 

data processing, encryption for data security, and 

prognostics and health management for life cycle 

management of PEECS. These techniques will 

evolve as packaging techniques for power 

electronics module change with adoption of wide-

band gap devices and need to reduce volume and 

weight of power modules whilst ensuring their 

reliability and robustness in challenging 

environments. 

4. Technological Requirements & Challenges 

A Digital Twin utilizes real-time data to assess the 

system's health, such as electrical and mechanical 

integrity, with the aim of predicting the overall 

reliability of the product in service. The electrical 

signals acquired through service operations can be 



 

effectively channeled as inputs to virtual sensors 

embedded within the Digital Twin.  

The DT prognosticates the thermal and mechanical 

behaviors intrinsic to the complex packaging such as 

a 3DHI system, predicting the reliability and 

maintenance plan. This real-time monitoring and 

prognostication also requires multi-physics and 

multi-scale simulation tools that can give high 

accuracy and fast results. However, the simulations 

of 3DHI design and operation conditions involve 

complex multi-physics and multi-scale models that 

often come with prohibitively high computational 

costs.  

The inherent constraints of physics-based 

simulations present challenges when it comes to 

achieving real-time data interaction and seamless 

convergence between digital models and physical 

systems. Utilizing a DT enhanced by advanced deep 

learning architectures, which can provide rapid 

computational solutions, offers a potential solution 

for implementing DT in electronic design and 

manufacturing. These advanced techniques could 

serve as the fundamental building blocks of 3DHI 

digital twins, but they also face numerous 

challenges, particularly within the context of multi-

physics and multi-scale scenarios.  

The designs of these neural networks and the 

associated training methods are of utmost 

importance, not only to ensure satisfactory 

generalization performance but also to enable their 

practical application. Addressing optimization 

challenges within multi-physics and multi-scale 

systems can lead to the discovery of optimal 

strategies for thermal management, power 

distribution, signal distribution, and mechanical 

stress design, ultimately enhancing the reliability of 

microelectronic systems. 

5. Future Scope 

Digital twin as of today is at the very early phase. 

Today, we estimate that DT will play an important 

role in electronics industry, specifically in the 

following aspects: 

▪ Simulation and Modeling:  DT will allow for 

more efficient analysis and optimization of 

electronic components and systems, reducing the 

risk of design flaws, enhancing product 

performance and cost optimization.  

▪ AI and Machine Learning Integration: With 

advancements in AI and machine learning, 

digital twins will enable development of new 

materials, calculation of highly non-linear and 

temperature dependent responses of materials. 

▪ Electronics Manufacturing: Digital twins will 

find extensive use in electronic manufacturing, 

such as predictive maintenance, process 

optimization, and quality control. 

▪ Industry 5.0: Digital Twins are instrumental in 

realizing Industry 5.0, which is the next phase of 

industrialization [19], emphasizing 

sustainability, human-centricity, and resilience. 

▪ Cross-Industry Collaboration: Federated 

learning will enable collaboration between 

electronics companies (supply chain) and those 

in other industries (OEMs) like healthcare, 

automotive, and energy. 

▪ Predictive Maintenance: Continuous condition 

monitoring paired with PHM (prognostics and 

health management) workflow will help in 

allowing timely scheduled product maintenance, 

risk mitigation, and minimized system 

downtime. 

▪ Integration with IoT and Edge Computing: 

Digital twins are becoming an integral part of the 

Internet of Things (IoT) ecosystem that enables 

real time monitoring, predictive maintenance 

and pave a way for new data driven business 

model. 

▪ Lifecycle Management, Sustainability and 

Green Initiatives: Digital twins can be used 

throughout the entire lifecycle of an electronic 

product, from design and manufacturing to 

operational use and maintenance. This will help 

in enhancing the efficiency and durability of 

electronic products, and to make more 

sustainable choices and reduce electronic waste.  

6. Summary 

Digital Twin has evolved as a concept in the past 

several years and has been adopted across several 

industries. The available definitions for DT are, 

therefore, highly contextualized and application-

specific. Highlighting the need for a generic fit-for-

all description, this article reviews a few and 

proposes an updated definition for the Digital Twin. 

A five dimensional architecture is elaborated on 

along with the workflow and modelling approaches.  

Implementation of Digital Twin for electronic 

packaged components and associated electronics 

enabled systems has been discussed for six diverse 

applications fields – manufacturing, optical 

networks, data centers & HPC, automotive, lighting, 

and power & energy systems. Considering these 

examples, the technological requirements and 

challenges are also discussed. Finally, nine aspects 

of the future scope of DT technology are presented.  
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